Google Search

Search

Already a Member ?

Best Business Opportunities in Guinea, Africa- Identification and Selection of right Project, Thrust areas for Investment, Industry Startup and Entrepreneurship

We can provide you detailed project reports on the following topics. Please select the projects of your interests.

Each detailed project reports cover all the aspects of business, from analysing the market, confirming availability of various necessities such as plant & machinery, raw materials to forecasting the financial requirements. The scope of the report includes assessing market potential, negotiating with collaborators, investment decision making, corporate diversification planning etc. in a very planned manner by formulating detailed manufacturing techniques and forecasting financial aspects by estimating the cost of raw material, formulating the cash flow statement, projecting the balance sheet etc.

We also offer self-contained Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects on the following topics.

Many of the engineers, project consultant & industrial consultancy firms in India and worldwide use our project reports as one of the input in doing their analysis.

We can modify the project capacity and project cost as per your requirement.
We can also prepare project report on any subject as per your requirement.

Page 17 of 58 | Total 575 projects in this category
« Previous   Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 .... 57 58   Next »

Add multiple items to inquiry
Select the items and then press Add to inquiry button

Select all | Clear all Sort by

Gold Salt

Gold salts are ionic chemical compounds of gold. The term, "gold salts" is a misnomer, and is the term for the gold compounds used in medicine. "Chrysotherapy" and "aurotherapy" are the applications of gold compounds to medicine. Contemporary research on the effect of gold salts treatment began in 1935, primarily to reduce inflammation and to slow disease progression in patients with rheumatoid arthritis. The use of gold compounds has decreased since the 1980s because of numerous side effects and monitoring requirements, limited efficacy, and very slow onset of action. Most chemical compounds of gold, including some of the drugs discussed below, are not salts, but are examples of metal thiolate complexes. The use of injected gold salts is indicated for rheumatoid arthritis. Its uses have diminished with the advent of newer compounds such as methotrexate and because of numerous side effects. The efficacy of orally administered gold is more limited than injecting the gold compounds.
Plant capacity: -Plant & machinery: -
Working capital: -T.C.I: -
Return: 1.00%Break even: N/A
Add to Inquiry Add to Inquiry Basket

Assaying Gold

Gold assaying is essential in determining the amount of gold in a mineral deposit. There are various gold assaying processes used today, each specific gold assay choice will depend on the type of gold item being checked for purity. Because purity is essential for gold coin or gold bullion bar values, assaying gold contents is therefore critical. The main reason for assaying gold bullion products is to make sure they meet the standards claimed by their respective issuing mint, meeting the minimum purity requirement for a particular gold coin or gold bar stamping.
Plant capacity: -Plant & machinery: -
Working capital: -T.C.I: -
Return: 1.00%Break even: N/A
Add to Inquiry Add to Inquiry Basket

Lithium Ion Battery (Battery Assembly)

Lithium batteries are now powering a wide range of electrical and electronical devices, including laptop computers, mobile phones, power tools, telecommunication systems and new generations of electric cars and vehicles. Lithium-ion (Li-ion) batteries, also known as secondary batteries, are rechargeable batteries in which lithium ions move from the negative electrode, usually made of carbon, to the positive electrode made of a metal oxide (nickel, manganese and cobalt) during discharge, and back when charging. The electrolyte is typically a mixture of organic solvents, such as ethylene carbonate, dimethyl carbonate or diethyl carbonate, containing complexes of lithium ions, such as lithium hexafluorophosphate (LiPF6), The India lithium-ion battery market is expected to grow at a robust CAGR of 29.26% during the forecast period, 2018-2023. The Indian automobile sector is one of the most prominent sectors of the country, accounting for nearly 7.1% of the national GDP. The industry produced a total of 25.31 million vehicles, including commercial, passenger, two, and three vehicles and commercial quadricycle in April-March 2017, as against 24.01 million in April-March 2016. However, India has set itself an ambitious target of having only electric vehicles (EV) by 2030, which is expected to increase the demand for lithium-ion batteries in India, significantly.
Plant capacity: -Plant & machinery: -
Working capital: -T.C.I: -
Return: 1.00%Break even: N/A
Add to Inquiry Add to Inquiry Basket

Lithium Ion Battery (Battery Assembly)

Lithium ion batteries are those that can be recharged. Lithium batteries are now powering a wide range of electrical and electronical devices, including laptop computers, mobile phones, power tools, telecommunication systems and new generations of electric cars and vehicles. The India lithium-ion battery market is expected to grow at a robust CAGR of 29.26% during the forecast period, 2018-2023. India has set itself an ambitious target of having only electric vehicles (EV) by 2030, which is expected to increase the demand for lithium-ion batteries in India, significantly. The high cost, associated with batteries that are used in the electric vehicles, is considered to be critical for India's ambitious target. To counter this, the Government of India is planning to set up lithium-ion battery manufacturing units in India, aggressively. This facilitates the development of new technologies and ensures a high quality product.
Plant capacity: 90 Volt, 180 AH Lithium Ion Battery Pack: 56 Nos./DayPlant & machinery: Rs 503 lakhs
Working capital: -T.C.I: Cost of Project: Rs 1382 lakhs
Return: 31.00%Break even: 56.00%
Add to Inquiry Add to Inquiry Basket

Biodegradable Disposable Plastic Cutlery

Biodegradable Disposable Plastic Cutlery. (Eco Friendly Compostable Spoons Cutlery) India is slowly becoming a country where people are turning health conscious. Thankfully, biodegradable cutlery has emerged as a better alternative to plastics across the globe and Indians have been early adopters of biodegradable products. These Cutlery is fully compostable and biodegradable in approximately 100 days in properly maintained compost facilities. These eco-friendly products are perfect for restaurants, cafeterias, business functions, trade shows, festivals and fairs, catering. Compostable or biodegradable bio-plastics, most commonly used for utensils, are marketed as a sustainable alternative to single-use plastic. More and more people are becoming environmentally conscious every day and are taking the necessary steps to protect the environment. Businesses that embrace the concept of being eco-friendly can realize a wide range of benefits from doing so. One of the business industries in which compostable products can be used the most is in the food industry. Both dine-in and takeout restaurants have the opportunity to incorporate eco-friendly products into their operations in the form of plates and cutlery. The Global Biodegradable Cutlery Market sales were 845 million pieces in 2016, and it will be 1274 million pieces in 2023; while the revenue of Biodegradable Cutlery Market was 30.5 million USD in 2016 and forecast to accomplish 38.9 million USD in 2023, with a CAGR of 5.5% by 2023. Increasing awareness regarding harmful effects associated with non-biodegradable plastic wastes is a key factor likely to drive the market in the forecast period. Disposable cutlery, unlike the traditional disposable cutlery made from steel, is single-use cutlery. It is also comparatively cheaper than steel cutlery. Additionally, due to its lightweight it can be carried easily and is most favourable for on-the-go food. The increasing use of plastic in our day-to-day life is creating a lot of plastic waste and regulatory authorities in various parts of the world are posing bans on the use of plastic. To overcome this challenge, foodservice packaging manufacturers use plant-based raw materials for manufacturing single-use packaging like disposable cutlery, plates, bowls, and trays. Expansion in bio-based foodservice manufacturing capabilities may benefit disposable cutlery manufacturers during the forecast period. Furthermore, in recent years several manufacturers are looking for positive opportunities in edible disposable cutlery made of wheat bran, rice, corn, and sorghum. Additionally, edible disposable cutlery reduces CO2 emissions by tons. As per product type, the global disposable cutlery market is segmented into fork, spoon, and knife. Rising demand for eco-friendly, safe, and sustainable cutlery owing to increasing number of restaurants, fast food joints, and cafeterias is fueling the demand for biodegradable plates and cups. Environment friendly cutleries are a feasible alternative that offers the convenience of disposable plates, cups, and spoon in picnics, parties, and other occasions. Moreover, they do not have any negative impact on the environment. The Biodegradable Cutlery Market is segmented based on raw materials, products, composition and end user. The biodegradable cutlery is mainly made from PLA resin, CPLA (modified PLA), and Starch Blends. In general, the plant starch biodegradable cutlery is made from 70% renewable resources and 30% fillers like polypropylene and talc. PLA is a bio-based plastic derived from renewable resources such as maize starch, tapioca roots, or sugar cane. 100% cutlery is made from recode bio-plastic, produced from a rapidly renewable starch sourced from non-GMO crops. Growth will be driven by the increased options and convenience of meals prepared or consumed away from home. Demand will also be supported by a shift toward the use of higher value products featuring durable plastic or compostable materials. The Biodegradable Cutlery Market is dominated by the key players like Biopak, Eco-Products, Inc, Trellis Earth, BioMass Packaging, World Centric, Bionatic GmbH, GreenGood, Better Earth, Nature House Green, BioGreenChoice, Green Home, Vegware, Biodegradable Food Service, Biogreenchoice, Green good, World Centric, Karat and Green Home. Tags #Biodegradable_Spoon, #Disposable_Plastic_Cutlery, Biodegradable, Compostable and Renewable Disposable Plastic, #100%_Compostable_Spoons, Biodegradable Spoons, Plastic Cutlery, Disposable Plastic Cutlery, Biodegradable Cutlery, #Biodegradable_Plastic_Cutlery, Biodegradable Disposable Plastic Cutlery, Biodegradable Disposable Cutlery Manufacture, Biodegradable Cutlery Manufacture, Disposable Biodegradable Plastic Cutlery, Eco Friendly and 100% Compostable Spoons, Eco Friendly Cornstarch 100 Biodegradable Disposable Plastic Cutlery, Biodegradable Disposable Eco-Friendly Cutlery, #Compostable_Cutlery, Disposable Eco-Friendly Plastic Cutlery, Disposable Cutlery, Eco Friendly Biodegradable Cutlery, Eco Friendly Compostable Spoons Cutlery, #100%_Compostable_Spoons, Compostable Biodegradable Spoons, Cutlery Utensils, How Compostable Utensils are Made, 100% Disposable & Eco Friendly Cutlery Items, Eco-Friendly Utensils, Disposable Utensils, Eco-Friendly Cutlery, Compostable & Biodegradable Cutlery, Environmentally Friendly Cutlery, #Compostable_Cutlery_Manufacturing, Environmentally Friendly Cutlery, #Detailed_Project_Report_on_Disposable_Biodegradable_Plastic_Cutlery, Project Report on Biodegradable Spoon, Pre-Investment Feasibility Study on Disposable Biodegradable Plastic Cutlery, Techno-Economic feasibility study on Compostable Cutlery Manufacturing, #Feasibility_report_on_Compostable_Cutlery_Manufacturing, Free Project Profile on Disposable Biodegradable Plastic Cutlery, Project profile on Compostable Biodegradable Spoons, Download free project profile on Biodegradable Spoon, Compostable Food Service Ware, Compostable Products, Disposable and Compostable Spoon, #Manufacturing_of_Biodegradable_Plastics_Cutlery
Plant capacity: -Plant & machinery: -
Working capital: -T.C.I: -
Return: 1.00%Break even: N/A
Add to Inquiry Add to Inquiry Basket

Recovery of Fe2O3 & TiO2 from Bauxite Processing Waste

Bauxite waste (Red Mud) of Indian origin contains around 55% plus of Fe2O3 and is considered as a hazardous waste material for the alumina industry which is generated in the order of two tons of Red Mud per one tone of alumina produced from bauxite. The worldwide alumina production is around 58 million tonnes in which India counts for 2.7 million tonnes. India produces around 5.4 million tonnes of Red Mud per annum from its various alumina refineries. Titanium is a precious, light, corrosion resistant, bio-inert and strong element. Moreover, titanium dioxide is widely used in materials in our day-to-day life and its applications are quite vast, including in paints, catalysts, pigments and sunscreen. Despite the fact that the processing of titanium is quite expensive, it is more bene?cial to recover titanium compared with its high processing cost. One of the main focuses of the research community has been on extracting titanium from red mud. The global Ferric Oxide market is likely to touch valuation of US$1,951.8 mn by the 2025 end. The marketplace is likely to register significant growth owing to booming construction industry likely to boost demand for the ferric oxide market in the coming years. The demand for titanium dioxide in India stood at 57 KTPA in 2018 and is projected to grow at a CAGR of 9.19% during 2019-2030 to reach 165 KTPA by 2030. Increasing use of titanium dioxide in various end-use industries such as paints, pigments and textiles as dispersing agent, flocculent, and whitening agent is the key factor spurring the demand for titanium dioxide across the country. Few Indian major players are as under: • Bengal Chemicals & Pharmaceuticals Ltd. • Bharat Chemicals & Fertilizers Ltd. • Kerala Minerals & Metals Ltd. • Kolmak Chemicals Ltd. • Tata Pigments Ltd. • Travancore Titanium Products Ltd. • V V Titanium Pigments Pvt. Ltd.
Plant capacity: Ferric Oxide (Fe2O3): 27,000 MT per Annum Titanium Dioxide (TiO2): 9,000 MT per Annum Remains Materials: 200,000 MT per AnnumPlant & machinery: 408 Lakhs
Working capital: -T.C.I: Cost of Project: 1741 Lakhs
Return: 29.00%Break even: 62.00%
Add to Inquiry Add to Inquiry Basket

Recovery of Fe2O3 & TiO2 from Bauxite Processing Waste

Ferric oxide (Fe? O?) is an inorganic compound also known as hematite. Ferric oxide is used in the iron industry in the manufacturing of alloys and steel. The Food and Drug Administration (FDA) has approved ferric oxide pigment for use in cosmetics. Moreover, ferric oxide granules are used in the form of filtration media for removing phosphates in saltwater aquariums. FOR Fe2O3 • In iron industries for producing steel and alloys • Ferric oxide powder, also called jeweler’s rouge, is used for polishing lenses and metallic jewelry • Its granular form is used as a filtration media for pulling out phosphates in saltwater aquariums • As FDA-approved Pigment Brown 6 and Pigment Red 101, for use in cosmetics. • In biomedical applications, because its nanoparticles are non-toxic and biocompatible Recovery of Fe2O3 Fe2O3 is another material in red mud that has attracted a number of researchers. Until now, there are three means to recover iron from red mud: smelting, solid-state reduction and magnetic separation. In smelting process, red mud is charged into blast furnace or rotary furnace with a reducing agent. Then, iron oxide in red mud is reduced to generate pig iron that can be used in steel production. However, smelting process has some demerits. High energy and capital costs are associated with blast furnace (BF) operation because scale of operation is high. Red mud must be mixed with some good-grade iron ore to maintain the minimum grade of the charge to BF. In addition, titanium reacts with other constituents of the slag to form multiple oxides that are difficult to leach. In the solid-state reduction process, the mud is mixed with a reducing agent or contacted with a reducing gas to produce metallic iron. The product can be an input either in a steel-making furnace or a conventional blast furnace. Compared to smelting process, solid-state reduction process consumes less energy. But, it also has some disadvantages. First, the metallic iron produced is quite difficult to separate from the rest of product. So, it is easily polluted by gangue materials. Second, the product is in a very fine form. The recovery rate of Fe2O3 was 45% (weight percent). Another means is to convert hematite or goethite in red mud to magnetite firstly, which is followed with magnetic separation. Obviously, this process is more complex than magnetic separation. Directly. But it also has some advantages. First, goethite is easier to separate magnetically and needs less energy to reduce compared to hematite. So, the extra cost of reducing hematite to magnetite can be compensated by the energy difference between reducing hematite and magnetite to metallic iron. Titanium Dioxide, also known as titanium (IV) oxide or titania, is a white crystalline powder, made up of ilmenite and rutile, which are used as the main raw materials. It is created using either the chloride process or sulfuric acid, referred to as the sulfate process. Titanium dioxide is extensively used as a white pigment in paints and coatings application. Also, it has a wide range of applications, ranging from paints and sunscreens to food coloring. FOR TiO2 Uses for white pigment Four million tons of pigmentary TiO2 are consumed annually. Apart from producing a white colour in liquids, paste or as coating on solids, TiO2 is also an effective opacifier, making substances more opaque. Here are some examples of the extensive range of applications: (1)Paints (2)Plastics (3) Papers (4) Inks (5) Medicines (5) Most toothpastes (6) Skimmed milk; adding TiO2 to skimmed milk makes it appear brighter, more opaque and more palatable Recovery of TiO2 Generally, there have been two main methods developed by which the titanium can be recovered from red mud: pyrometallurgical recovery and hydro-metallurgical recovery. The pyro- metallurgical method generally comprises the separation of pig iron. The red mud is calcined at a range of temperatures, from 800 to 1350°C, and is smelted through a reducing agent using an electric-furnace to obtain melted iron as well as slag that includes titanium dioxide, silica and alumina. The metallic iron is removed from the slag and the slag is digested to recover the titanium and aluminium from the solution. The pyro-metallurgical process is not an energy-friendly method and, hence, the hydrometallurgical technique usually attracts more attention from the research community. A number of the acids’ extractability have been analysed to recover titanium from red mud, such as dilute and concentrated H2SO4 and hydrochloric acid. The solvent extraction technique has been applied to extract titanium from red mud using HCl, which comprised di- and mono-. Red mud can also be considered a secondary source of the most important modification of titanium compound, titanium dioxide. Market Outlook The Global Ferric Oxide Market is expected to register a CAGR of 4.99% to reach a value of USD 2,414,382.9 Million by 2030. The growing construction industry output is expected to be one of the most significant drivers for the iron oxide market on a global scale. Iron oxide finds a profound rate of application in the construction industry such as in the colouring of various construction materials, including concrete blocks and bricks, ready-mixed concrete and roofing tiles. With the steady growth of the construction industry, stemming from increasing urban and civil infrastructure projects, the demand for iron oxides is expected to increase significantly. Additionally, the use of iron oxide for applications such as paints & coatings, plastics, ceramics and chemicals would necessitate its bulk consumption. The primary driver of the global ferric oxide market is its growing adoption in steel production. The increasing application of steel in the major end-use industries such as transportation, construction, energy, packaging, and consumer appliances is also a prime factor driving market growth. Steel finds application in the manufacturing of automobile structures, panels, doors, engine blocks, gears, suspension, wheels, fuel tanks, steering, and braking systems. The use of iron oxide pigments to impart colors to construction materials, paints, inks, plastics, papers, cosmetics, rubbers, concrete blocks, and tiles is another key driver of the market. The growing construction industry output is expected to be one of the most significant drivers for the iron oxide market on a global scale. The growing adoption of iron oxide nanoparticles in wastewater treatment is an excellent opportunity for the players in the market. With the steady growth of the construction industry, stemming from increasing urban and civil infrastructure projects, the demand for iron oxides is expected to increase significantly. Additionally, the use of iron oxide for applications such as paints & coatings, plastics, ceramics and chemicals would necessitate its bulk consumption. The ferric oxide market is witnessing consolidation, driven by the pursuit for sustainability among market participants, owing to the imposition of stringent regulations on the production of ferric oxide, which are increasing the overhead costs for ferric oxide manufacturers. This has prompted ferric oxide manufacturers to consolidate production and business operations through acquisition of external enterprises having a sufficient infrastructure and resources. Some of the major players operating in the Ferric Oxide market: • Cathay Industries • Huntsman • Lanxess • Bayferrox • Toda Kogyo • Quality Magnetite • Prochem • BariteWorld • Cathay Industries • Nano-Oxides • Pirox Titanium Dioxide The global titanium dioxide market size was valued at USD 15.76 billion in 2018 and is expected to witness a CAGR of 8.7% from 2019 to 2025. Thus, rising number of residential and non-residential construction projects is augmenting the demand for paints & coatings, thereby boosting overall market growth. In addition, high demand for anti-corrosive architectural coatings in the pigments has increased the demand for titanium dioxide. The rising use of titanium dioxide in ceramic industry is one of the key factors expected to trigger the market growth in the forthcoming years. It is used as popular ingredient in different products including paint, plastic, paper, pharmaceuticals, and other items. It also provides variegation and crystallization to the color and texture of ceramic glazes. It further prevents pollutants including nitrogen oxide, sulfur oxide, carbon monoxide from affecting ceramic products. The tightening of regulations globally over vehicular emissions and fuel efficiency concerns have compelled manufacturers to take measures in making vehicles lightweight. High availability of substitutes the rising prices of TiO2 and its negative effects on human are pushing end-user industries to use substitute products. This will hinder the growth of the titanium dioxide market during the forecast period. Titanium dioxide particles have wide application scope due to their high stability, photocatalytic properties, and anti-corrosive nature and are manufactured from anatase. They are used in consumer products, such as sunscreens, and as components for articulating implants for the hip and knee. In the near future, its usage in plastics is set to rise at a breakneck pace thereby providing a major fillip to the global titanium dioxide market. Titanium dioxide find application in bettering numerous characteristics of plastics such as color, opacity, and strength. And with the ever-surging demand for plastic on account of the burgeoning world trade, the global titanium dioxide market growth it expected to remain supported. Top Key Players of Titanium Dioxide (TiO2) Market: • KRONOS Worldwide Inc. • Lomon Billions • The Chemours Company • Tronox Holdings plc • Venator Materials PLC. Tags #Recovery_of_Fe2O3_from_Bauxite_Processing, #Iron_Oxide_Recovery, #Recovery_of_Ferric_Oxide, #Recovery_of_Ferric_oxide_from_Bauxite_Processing_Waste, Ferric Oxide, Manufacturing Applications for Iron (III) Oxide, Manufacture of ferric oxide, Production of Iron (II) Oxide (Fe2O3), Process for the Manufacture of Iron Oxide, Process for Producing Iron Oxide, Iron Oxide Formula, Ferric Oxide Production, How to Make Iron Oxide, Preparation of iron oxide, Titanium Dioxide (TiO2) Production and Manufacturing, #Titanium_Dioxide, Manufacture of Titanium Dioxide, #Titanium_Dioxide_(TiO2) Production, Manufacturing Process of Titanium Dioxide, Titanium Dioxide Properties, Titanium Dioxide Uses, Titanium Dioxide Process Flow Diagram, Titanium Dioxide Manufacture, How to Make Titanium Dioxide, Manufacturing Process of Titanium Dioxide, Production of Titanium Dioxide, Titanium Dioxide Production, #Recovery_of_Titanium_Dioxide, Process for Recovery of Titanium Dioxide, Recovering Titanium Dioxide (Tio2), Recovery of Titanium Dioxide from Bauxite Processing Waste, #Project_Report_on_Recovery_of_Ferric_oxide_from_Bauxite_Processing_Waste, Detailed Project Report on Recovery of Ferric oxide from Bauxite Processing Waste, Project Report on Recovery of Titanium Dioxide, Pre-Investment Feasibility Study on Recovery of Ferric oxide from Bauxite Processing Waste, Techno-Economic feasibility study on Recovery of Titanium Dioxide, #Feasibility_report_on_Recovery_of_Ferric_oxide_from_Bauxite_Processing_Waste, #Free_Project_Profile_on_Recovery_of_Ferric_oxide_from_Bauxite_Processing_Waste, Project profile on Recovery of Ferric oxide from Bauxite Processing Waste, Download free project profile on Recovery of Titanium Dioxide
Plant capacity: -Plant & machinery: -
Working capital: -T.C.I: -
Return: 1.00%Break even: N/A
Add to Inquiry Add to Inquiry Basket

Oxygen and Nitrogen Gas Plant

Oxygen (CO2,gas at O0/1 matm. 1.429 g./l, crit. pressure, 49.7 matm.) is a colorless, odourless, and tasteless gas, somewhat heavier than air. It is one of the most active elements and plays on essential part in the respiration of living cells and in combustion. Nitrogen is the chemical element with the symbol N and atomic number 7. It was first discovered and isolated by Scottish physician Daniel Rutherford in 1772, nitrogen is the principal gas in air (78%). India industrial gases market was valued at $ 2.1 billion in 2017 and is forecast to grow at a CAGR of over 11% to surpass $ 3.9 billion in 2023 on account of growing demand from metal industry, particularly steel. Moreover, regular capacity expansions by automobile, refinery and chemical companies coupled with increasing number of new applications of industrial gases is further augmenting demand for industrial gases in the country. As a whole there is a good scope for new entrepreneur to invest in this business. Few Indian major players are as under: • Air Liquide India Holding Pvt. Ltd. • Arrow Oxygen Ltd. • Bellary Oxygen Co. Pvt. Ltd. • Bhagawati Oxygen Ltd. • Bhilai Oxygen Ltd. • Ellenbarrie Industrial Gases Ltd. • Govind Poy Oxygen Ltd.
Plant capacity: Oxygen Gas:667,800 Cu.mtrs per annum Nitrogen Gas:2,480,400 Cu.mtrs per annumPlant & machinery: 306 Lakhs
Working capital: -T.C.I: Cost of Project:643 Lakhs
Return: 26.00%Break even: 62.00%
Add to Inquiry Add to Inquiry Basket

Recovery of Fe2O3 & TiO2 from Bauxite Processing Waste

Bauxite waste (Red Mud) of Indian origin contains around 55% plus of Fe2O3 and is considered as a hazardous waste material for the alumina industry which is generated in the order of two tons of Red Mud per one tone of alumina produced from bauxite. Application of Red Mud for production of different value added items like Portland cement, bricks & blocks, tiles, paints & pigments, soil amending agents, fibre reinforced polymer composites for building materials as wood substitutes etc., have been tried out by many researchers throughout the world. The global Ferric Oxide market is likely to touch valuation of US$1,951.8 mn by the 2025 end. The marketplace is likely to register significant growth owing to booming construction industry likely to boost demand for the ferric oxide market in the coming years. The demand for titanium dioxide in India stood at 57 KTPA in 2018 and is projected to grow at a CAGR of 9.19% during 2019-2030 to reach 165 KTPA by 2030. As a whole there is a good scope for new entrepreneur to invest in this business. Few Indian major players are as under: • Bengal Chemicals & Pharmaceuticals Ltd. • Bharat Chemicals & Fertilizers Ltd. • Kerala Minerals & Metals Ltd. • Kolmak Chemicals Ltd. • Tata Pigments Ltd. • Travancore Titanium Products Ltd. • V V Titanium Pigments Pvt. Ltd.
Plant capacity: Ferric Oxide (Fe2O3):27,000 MT per Annum Titanium Dioxide (TiO2):9,000 MT per Annum Remains Materials:200,000 MT per AnnumPlant & machinery: 407 Lakhs
Working capital: -T.C.I: Cost of Project:1741 Lakhs
Return: 29.00%Break even: 62.00%
Add to Inquiry Add to Inquiry Basket

Oxygen and Nitrogen Gas Production

Oxygen and Nitrogen Gas Production. Industrial Gas Plant India industrial gases market forecast to grow at a CAGR of over 11% Oxygen Gas Oxygen and nitrogen are the most important industrial gases finding its application in large quantities in metal fabrication and cutting industries. It is used in electric arc steel furnaces for decarburization and scrap matting. Oxygen is also used in medical treatment and for breathing at high altitude flying. Some quantities of liquid oxygen are used in explosives, chemicals and petrochemicals industries as an oxidizing and catalytic agent. As the quantity of oxygen required in integrated steel plants is huge, the excess of oxygen is compressed and bottled in steel cylinders and supplied to engineering industries such as manufacture of machine tools, industrial machinery, automobiles and component manufacturers, fabricators of chemical plants, storage tanks, and furniture and building elements. Nitrogen Gas Nitrogen is a colorless, odorless, inert and non-flammable gas. Although it is inert in nature, it reacts with other compounds under specific conditions. Industrial Nitrogen has a varied range of application in different industries. Nitrogen gas is used in the production of ammonia which in turn is used for the manufacture of urea and ammonium phosphate, which are fertilizers of great use. Nitrogen gas is used for blanketing hazardous chemicals which is an inert atmosphere. Nitrogen gas is used for purging purposes. Nitrogen gas is used for the purification of other gases with extremely low boiling points, such as hydrogen scrubbing. High purity nitrogen is used in strip steel annealing prior to tin plating. Human blood and cattle sperm cells are pressured by using nitrogen liquid freezing method. Large quantities of liquid nitrogen are employed in the preservation of food by rapid freezing. Liquid nitrogen is also used to maintain low temperatures during the transportation of frozen food. The demand of oxygen and nitrogen gas will increase in future Uses: Oxygen gas • Oxygen is also used in many industrial, commercial, medical, and scientific applications. It is used in blast furnaces to make steel, and is an important component in the production of many synthetic chemicals, including ammonia, alcohols, and various plastics. • The steel industry also uses oxygen gas in an oxy-acetylene flame, for scale removal from billets, and in oxygen lances, for cutting out imperfect ions. • The continuous gasification of coal or other solid fuel, oxygen gas admixed with steam is passed into the fuel bed and maintains a sufficiently high temperature to allow the waleragas reaction to proceed smoothly. • Oxygen gas is used in hospitals (to enrich air in respirators and to mix with anesthetics), aviation (for pilots' air supply), and pollution control. The space program was a major user of oxygen, • In the chemical and petrochemical industries, as well as in the oil and gas sector oxygen is used in commercial volumes as an oxidizer in chemical reactions. The use of oxygen in gas-flame operations, such as metal welding, cutting and brazing is one of the most significant and common applications of this gas. Nitrogen Gas • Nitrogen is used primarily as a freezing agent and a blanketing agent. About 21% of nitrogen produced is used for freezing • Other freezing applications include cryogenic size reduction of plastics, rubber, spices, and pharmaceuticals. About 33% of all nitrogen produced is used for blanketing, mostly in chemical processing and the electronics industry (14% each), with some application in the primary metals industry (5%). • Demand for nitrogen has been growing steadily 1n the liquefied industrial gases market and the chemical industry. In the aluminum industry, nitrogen has been replacing inert gas generators. The enhanced -oil products industry also requires fairly large quantities of gaseous nitrogen. • Nitrogen requirements for steel manufacture are modest and seldom exceed a small fraction of the oxygen flow. Some nitrogen~lso is used as the principal refrigerant in air separation cycles and as clean-up gas (to remove unwanted carbon dioxide and water). • Chemical Plants – Nitrogen is used to displace oxygen and prevent explosions in highly dangerous atmospheres, such as chemical plants and manufacturing facilities. Tire Inflation – Nitrogen offers many benefits when used to fill tires, such as giving them a longer life by reducing oxidation • Food Packaging – Nitrogen is used to displace oxygen in food packaging. By eliminating the oxygen, the food can last longer. It can also add a cushion around the food to keep it safe from breaking in transport. • Light Bulb Production – In incandescent light bulbs, nitrogen gas is often used as a cheaper alternative to argon. • Chemical Plants – Nitrogen is used to displace oxygen and prevent explosions in highly dangerous atmospheres, such as chemical plants and manufacturing facilities. • Tire Inflation – Nitrogen offers many benefits when used to fill tires, such as giving them a longer life by reducing oxidation. It also improves tire pressure retention to give drivers better gas mileage. • Electronics – When electronics are being assembled, nitrogen gas is used for soldering. Using nitrogen reduces the surface tension to provide a cleaner breakaway from the solder site. • Stainless Steel Manufacturing – By electroplating the stainless steel with nitrogen, the finished product is stronger and resistant to corrosion. • Pollution Control – Nitrogen gas can be used to remove the VOCs in liquids before they are discarded. • Pharmaceuticals – Almost every major drug class contains some nitrogen, even antibiotics. Nitrogen, in the form of nitrous oxide, is also used as an anesthetic. • Mining – In the mining industry, nitrogen gas is used to quickly extinguish fires by eliminating the oxygen from the air. And when an area is going to be abandoned, they use nitrogen to ensure the area will not explode. • Mild steel & carbon steel annealing • Electronic industries like semiconductors etc. • Blanketing during chemical reactions • Auto industries for Sintering, Brazing & Soldering • Food packaging • Tire filling • Metal powder formation Market Outlook The medical gases market size in India, in volume terms, is forecast to witness a two folds increase by 2019, exhibiting a CAGR of about 15% during 2014-19. The medical gases market in India is highly dominated by region-specific players, which are offering a stiff competition to multinational companies. India’s specialization in cardiology, orthopedic surgery, etc., is expected to drive healthcare demand, particularly for medical oxygen and nitrous oxide, which are vital requirements of any healthcare setup. Currently, the northern region, followed by the southern region, is the leading demand generators for medical gases, particularly medical oxygen gas. Oxygen Demand : Past and Future Year (In Million m3) 1990-91 450 2000-01 1335 2001-02 1525 2002-03 1725 2003-04 1975 2004-05 2315 2005-06 2760 2006-07 3360 2007-08 3730 2008-09 4910 2009-10 5400 2010-11 6250 2011-12 7210 2012-13 8200 2013-14 9165 2014-15 10000 2015-16 11250 2016-17 12800 2017-18 13950 2018-19 15700 2019-20 17230 2024-25 27125 Global Oxygen Market: Overview Oxygen is a colorless gas which is a paramount factor to sustain life. Oxygen is available in cylinders, containers, and cans. They are mostly used for industrial, medical, and scientific applications. Oxygen is used as an oxidizing agent and as a catalyst in various scientific and industrial processes. The oxygen market is growing at a significant pace and the growth in the oxygen market has resulted in an increase in the related markets such as medical oxygen generators, air-oxygen blenders, and stationary and portable oxygen concentrators. The global oxygen market is divided into its form, application, end-users, and geography. On the basis of a form of oxygen, the market is segregated into solid, liquid, and gaseous. Based on application, the market is classified into cosmetics, pharmaceutical, automobiles, and mining and mineral processing applications. On the basis of end-users, the market is categorized into industrial, medical, and scientific sectors. Diversification of the market on the basis of the region is seen into Asia Pacific, North America, Europe, Latin America, and the Middle East and Africa. Global Oxygen Market: Regional Analysis The largest share in the oxygen market is held by the Asia Pacific region. This growth can be attributed to reasons such as the growth of manufacturing sector and healthcare. Also, growth in the mineral and mining processing, where oxygen is a key catalyst, helps in the expansion of oxygen market in the region. Regions such as China, Japan, India, Australia, and New Zealand are showing major contribution in the Asia Pacific market. Key Players ? Hale Hamilton ? Maximator GmbH ? Hydrotechnik UK Ltd ? HyDAC ? Hydraulics International ? Inc ? Accudyne Industries ? Semmco Limited among Industrial Nitrogen Gas Market The market is witnessing a rise in demand from the food and beverages market. Its freezing property has expanded its use in blood banks, cryogenic treatments and plastic and rubber industries. Demand from end-users such as metal manufacturers, chemical and transportation industries are also propelling the industry to grow. Application wise its use can be segmented into metal manufacturing, oil and gas sector, petrochemical, pharmaceutical and healthcare, chemical, food and beverage industry and electronics. Food packaging - to displace the Oxygen from packaging that helps the food product to last long, used as fertilizer when combined with Ammonia to form Nitrates, Tire Inflation - by improving life of the tire and getting better mileage. The demand for industrial gases also continued to remain strongly driven by an increase in investments in infrastructure development and petroleum reserves in emerging markets. In fact, metal fabrication and production sector are expected to remain the second major sector for industrial gases, next to petroleum refining. Over the longer term to 2022, the annual growth rate in the industrial gas market is expected to significantly exceed the rate of industrial production driven by multitude of factors including opening of new startups, rapid industrialization of emerging economies, increasing demand for energy, environment regulations, improving healthcare sector, and advancements in industrial technology. Tags #Oxygen_and_Nitrogen_Gas_Plant, #Production_of_Oxygen_Gas, How Oxygen is Made, Producing Oxygen Gas, Oxygen Plant, Nitrogen Plants, #Oxygen_Plant, Industrial Oxygen Plant, #Industrial_Gases, Making of Oxygen Gas, Oxygen Production, Manufacturing Process of Oxygen Gas Plant, Oxygen Plant Manufacturing Process, Oxygen Plant in India, Oxygen Gas Production Plant, Oxygen Gas Manufacturing Plant, Manufacturing of Oxygen Gas, Project Report on Oxygen Gas Plant, Oxygen Gas Manufacture in India, Manufacturing of Medical Gases, Oxygen Gas Manufacturing Unit, Nitrogen Gas Plant, Oxygen Gas Plant Project Cost, #Oxygen_&_Nitrogen_Gas_Plant, Oxygen and Nitrogen Gas Plant Manufacturing Plant, Industrial Gas Plants, Uses and Applications of Nitrogen Gas, Nitrogen Gas Production, Nitrogen Gas Manufacturing Process, #Production_of_Nitrogen, Manufacturing Process of Nitrogen Gas, Manufacturing Process of Oxygen Nitrogen Gas Plant, Setting up Oxygen and Nitrogen Gas Plant, #Industrial_&_Medical_Oxygen_and_Nitrogen_Gases, Industrial Oxygen Gas Filling Plant, Medical Gases, #Oxygen_Gas_Plant_Project Cost, Industrial Oxygen Plant Project Report Pdf, Medical Oxygen Plant Setup Cost in India, Oxygen Gas Business, #How_to_Start_Oxygen_Plant, Project Report on Oxygen & Nitrogen Gas Industry, Detailed Project Report on Oxygen & Nitrogen Gas Plant, #Project_Report_on_Oxygen_&_Nitrogen_Gas_Plant, Pre-Investment Feasibility Study on Oxygen & Nitrogen Gas Plant, Techno-Economic feasibility study on Oxygen & Nitrogen Gas Plant, Feasibility report on Oxygen & Nitrogen Gas Plant, Free Project Profile on Oxygen & Nitrogen Gas Plant, Project profile on Oxygen & Nitrogen Gas Plant, Download free project profile on Oxygen & Nitrogen Gas Plant
Plant capacity: -Plant & machinery: -
Working capital: -T.C.I: -
Return: 1.00%Break even: N/A
Add to Inquiry Add to Inquiry Basket

Information
  • One Lac / Lakh / Lakhs is equivalent to one hundred thousand (100,000)
  • One Crore is equivalent to ten million (10,000,000)
  • T.C.I is Total Capital Investment
  • We can modify the project capacity and project cost as per your requirement.
  • We can also prepare project report on any subject as per your requirement.
  • Caution: The project's cost, capacity and return are subject to change without any notice. Future projects may have different values of project cost, capacity or return.

Add multiple items to inquiry
Select the items and then press Add to inquiry button

Page 17 of 58 | Total 575 projects in this category
« Previous   Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 .... 57 58   Next »

About NIIR PROJECT CONSULTANCY SERVICES

Hide »

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

Our various services are: Detailed Project Report, Business Plan for Manufacturing Plant, Start-up Ideas, Business Ideas for Entrepreneurs, Start up Business Opportunities, entrepreneurship projects, Successful Business Plan, Industry Trends, Market Research, Manufacturing Process, Machinery, Raw Materials, project report, Cost and Revenue, Pre-feasibility study for Profitable Manufacturing Business, Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Business Opportunities, Investment Opportunities for Most Profitable Business in India, Manufacturing Business Ideas, Preparation of Project Profile, Pre-Investment and Pre-Feasibility Study, Market Research Study, Preparation of Techno-Economic Feasibility Report, Identification and Selection of Plant, Process, Equipment, General Guidance, Startup Help, Technical and Commercial Counseling for setting up new industrial project and Most Profitable Small Scale Business.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

^ Top