Perfumes and Flavours Technology Handbook


Perfumes and Flavours Technology Handbook

Author: H. Panda
Format: Paperback
ISBN: 9788178331287
Code: NI227
Pages: 704
Price: Rs. 1,875.00   US$ 150.00

Published: 2010
Publisher: Asia Pacific Business Press Inc.
Usually ships within 5 days

Add to Cart

Recommend to Friend

Download as PDF

Bookmark and Share

Perfumes & flavours with their products are part & parcel of our everyday life. The demand worldwide for perfumes is enormous & constantly on the increase. The perfume & flavour industry has become a major business. Mans search for substances which can produce new flavours & perfumes, substitute for expensive & or scarce ones, or augment & enhance existing desirable ones continuous a pace. The manufacture of perfume oils & flavouring compounds is an art & it means metering of the individual components in accordance with the formula, followed by blending for homogenization. But in all perfume & flavour house the oil formulas are among the best kept secrets & represent the knowhow. They play a major role in the success of the companies. Odors are also commonly called scents, which can refer to both pleasant and unpleasant odors. The terms fragrance and aroma are used primarily by the food and cosmetic industry to describe a pleasant odor, and are sometimes used to refer to perfumes. The odours are classified in various kinds such as floral, woody, rustic, balsamic, fruity, animal etc. There are numerous types of applications of perfumes in modern industrialized society such as perfumes used in soaps & detergents, paints, adhesives, air deodorants, cosmetics, toilet & beauty preparations, textiles, beverages, foods, medicines, and many more. The global flavour industry can be characterized as highly technical, specialized, and innovative. This industry is highly competitive and concentrated, compared to other product categories within the food and beverage market. The global flavours market is predicted to grow at a Compound Annual Growth Rate (CAGR) of 2% per annum.
The present book deals with the new techniques & manufacturing processes with formulae of different useful and demandable perfumes and flavours. This book will definitely help not only to perfumers & flavour chemists but to all upcoming entrepreneurs, scientists, technocrats etc.

^ Top

Related Books


Hide Down
Orangeflower and Neroli
Fougere (Fern)
Linden (Lime Blossom)
Mignonette (Reseda)
New-mown Hay
Orchid (Orchidèe)
Sweet Pea
Syringa (Philadelphus)
Trèfle (Clover)
Floral Bouquet Perfumes
Aldehydic Perfumes
Chypre Types
Oriental Perfumes
‘Green’ Perfumes
Dominant Note Types
Eau De Cologne
Toilet Waters
Modified Colognes
Perfumes for Men
The Uses of Perfumes
Perfumes for Soaps
Perfuming Synthetic Detergents
Perfumed Disinfectants
Perfuming the Air
Incense and Fumigants
Perfumed Candles
Paints and Polishes
Other Household Products
Perfuming Cosmetics
Adapting the Perfume to the Vehicle
Perfuming Creams
Perfuming Powders
Perfuming Lipstick and Nail Lacquer
Hair Preparation Perfumes
Perfumed Aerosols
In Pharmacy and Medicine
Industrial Perfumes
Perfumes for Textiles
Perfumed Ink and Paper
Masking Malodours
Perfume in Agriculture
Perfumed Insecticides
And Many Other Uses...
Flavours as Perfumes
Almond, Biiter
Ambergris (Tincture)
Ambrette, Seed
Angelica, Root
Angelica, Seed
Anise, Seed
Anise, Star
Asafoetida (Resinoid)
Basil, Sweet
Beeswax (Absolute)
Benzoin, Siam (Resinoid)
Benzoin, Sumatra (Resinoid)
Birch, Tar
Boronia (Absolute)
Broom (Absolute)
Bruyere (Absolute)
Buchu, Leaf
Calendula (Concrete, Absolute)
Cassie (Concrete, Absolute)
Chamomile, German
Chamomile, Roman
Champaca (Concrete, Absolute)
Cinnamon, Bark
Cinnamon, Leaf
Cistus (Resinoid)
Civet (Absolute)
Clary Sage (Absolute)
Clove Bud
Clove Leaf
Copaiba Balsam
Dwarf Pine
Elemi (Resinoid)
Eucalyptus Citriodora
Eucalyptus Dives
Eucalyptus Globulus
Eucalyptus Staigeriana
Fennel Bitter (Wild)
Fennel Sweet
Fenugreek (Resinoid)
Fir Needle
Fir Needle, Siberian
Galbanum (Resinoid)
Gurjun (Balsam)
Helichrysum (Concrete, Absolute)
Hyacinth (Absolute)
Jasmine (Absolute)
Juniper Berry
Linaloe Wood
Litsea Cubeba
Mate (Absolute)
Mentha Citrata
Mignonette (Absolute)
Mimosa (Concrete, Absolute)
Musk (Tincture)
Myrrh (Resinoid)
Narcissus (Concrete, Absolute)
Oakmoss (Resinoid, Absolute)
Olibanum (Resinoid)
Opopanax (Resinoid)
Orange Bitter
Orange Flowers (Concrete, Absolute)
Orange Sweet
Osmanthus (Concrete, Absolute)
Pepper, Black
Peppermint, Arvensis
Peppermint, Piperita
Peru Balsam
Pine Needle
Rose (Concrete, Absolute)
Silver Fir Needle
Spike Lavender
Storax (Resinoid)
Tobacco (Absolute)
Tolu Balsam (Resinoid)
Tonka Beans (Absolute)
Treemoss (Resinoid, Absolute)
Tuberose (Concrete, Absolute)
Turpentine (Rectified)
Vanilla (Resinoid)
Violet (Concrete, Absolute)
Ylang Ylang
Materials Employed as Odorants
Acetate C-8
Acetate C-9
Acetate C-10
Acetate C-11
Acetate C-12
Acetic Glacial (Pure)
Alcohol C-7
Alcohol C-8
Alcohol C-9
Alcohol C-10
Alcohol C-11 (Undecylenic)
Alcohol C-11 (Undecylic)
Alcohol C-12
Alcohol C-16
Aldehyde C-7
Aldehyde C-8
Aldehyde C-9
Aldehyde C-10
Aldehyde C-11 (Undecylenic)
Aldehyde C-11 (Undecylic)
Aldehyde C-12 (Lauric)
Aldehyde C-12 (Mna)
Aldehyde C-14 (Myristic)
Aldehyde C-14 (Pure)
Aldehyde C-16 (Pure)
Aldehyde C-18
Aldehyde C-19
Aldehyde C-20
Allyl Sulfide
Amyl Benzoate
Amyl Butyrate
Amyl Cinnamic Aldehyde
Amyl Phenyl Acetate
Amyl Propionate
Angelic Acid
Anisic Acid
Anisic Alcohol
Anisic Aldehyde
Anisyl Acetate
Anisyl Formate
Anthranilic Acid
Benzoic Acid
Benzyl Acetate
Benzyl Benzoate
Benzyl Cinnamate
Benzyl Formate
Benzyl Phenyl Acetate
Benzyl Propionate
Benzyl Salicylate
Benzyl Valerianate
Bornyl Acetate
Bromo Styrol
Butyl Benzoate
Butyric Acid
Butyric Aldehyde
Capric Acid
Caproic Acid
Caprylic Acid
Cedryl Acetate
Cinnamic Acid
Cinnamic Aldehyde
Cinnamyl Acetate
Cinnamyl Benzoate
Cinnamyl Cinnamate
Cinnamyl Formate
Citric Acid
Citronellyl Acetate
Citronellyl Butyrate
Citronellyl Formate
Citronellyl Propionate
Citronellyl Valerianate
Coumarin Acid
P-cresyl Acetate
P-cresyl Phenyl Acetate
Cuminic Aldehyde
Dimethyl Benzyl Carbinyl Acet Ate
Dimethyl Octanol
Dimethyl Phenyl Carbinyl Acetate
Diphenyl Oxide
Epoxy Linalyl Acetate
Ethyl Acetoacetate
Ethyl Alcohol
Ethyl Anisate
Ethyl Anthranilate
Ethyl Benzoate
Ethyl Caproate
Ethyl Cinnamate
Ethyl Formate
Ethyl Hexyl Carbinyl Acetate
Ethyl Linalyl Acetate
Ethyl Phenyl Acetate
Ethyl Salicylate
Eugenol Acetate
Formic Acid
Fumaric Acid
Geranyl Acetate
Geranyl Butyrate
Geranyl Caproate
Geranyl Phenyl Acetate
Geranyl Propionate
Heptanoic Acid
Isoamyl Acetate
Isoamyl Salicylate
Isobutyl Acetate
Isobutyl Benzoate
Isobutyl Cinnamate
Isobutyl Phenyl Acetate
Isobutyl Quinoline
Isobutyl Salicylate
Isopropyl Anthranilate
Lactic Acid
Lauric Acid
Llnalyl Acetate
Linalyl Butyrate
Linalyl Cinnamate
Linalyl Formate
Llnalyl Propionate
Linalyl Valerianate
Malic Acid
Menthyl Acetate
P-methoxy Phenylbutyl Acetate
Methyl Alcohol
Methyl Anisate
Methyl Anthran1late
Methyl Benzoate
Methyl Butyrate
Methyl Cinnamate
Methyl Eugenol
Methyl Hexyl Carbinyl Acetate
Methyl Phenyl Acetate
Methyl Salicylate
Musk Ambrette
Musk Ketone
Musk Xylol
Neryl Acetate
Nonoic Acid
-octa Lactone
Oxalic Acid
Phenyl Acetaldehyde
Phenyl Acetic Acid
Phenyl Ethyl Acetate
Phenyl Ethyl Alcohol
Phenyl Ethyl Anthranilate
Phenyl Ethyl Butyrate
Phenyl Ethyl Cinnamate
Phenyl Ethyl Formate
Phenyl Ethyl Phenyl Acetate
Phenyl Ethyl Propionate
Phenyl Ethyl Salicylate
Phenyl Propyl Acetate
Phenyl Propyl Alcohol
Phenyl Propyl Butyrate
Phenyl Propyl Formate
Propionic Acid
Propyl Alcohol
Propyl Formate
Pyroligneous Acid
Rhodinyl Acetate
Rhodinyl Formate
Salicylic Acid
Santalyl Acetate
Sebacic Acid
Styralyl Acetate
Succinic Acid
Tannic Acid
Tartaric Acid
Terpinyl Acetate
Terpinyl Formate
Terpinyl Propionate
Tiglic Acid
Trichloromethylphenyl Carbinyl Acetate
Undecylenic Acid
Valerianic Acid
Vetiver Acetate
Yara Yara
Amyl Cinnamic Aldehyde
Amyl Salicylate
Anisic Aldehyde
Benzyl Acetate
Benzyl Alcohol
Benzyl Benzoate
Benzyl Cinnamate
Benzylidene Acetone
Benzyl Salicylate
Bornyl Acetate
Cinnamic Acid
Cinnamic Alcohol
Cinnamic Aldehyde
P-cresyl Acetate
P-cresyl Methyl Ether
Cyclamen Aldehyde
Diphenyl Ketone
Diphenyl Oxide
Linalyl Acetate
Methyl Anthranilate
Methyl Heptyne Carbonate
P-methyl Quinoline
Methyl Salicylate
Musk Ambrette
Musk Ketone
Musk Xylene
Phenyl Acetic Acid
Phenyl Ethyl Acetate
Phenyl Ethyl Alcohol
Rose Crystals
Rose Oxide
Lily of the Valley
Moon Flower
Morning Glory
Orange Blossom
Pine (Needles)
Sweet Pea
Ylang Ylang
Seaweed (Algae)
Fringe Tree
Fixatives For Perfumes
Natural Flavors Simulated with Synthetic
Black Currant
Cherry (Sweet and Sour)
Grape Fruit
Melon (Watermelon)
Peach (Freestone, Clin Gstone, Nectarine)
Plum (Prunes)
Pomegrana Te
Red Currant
Pineapple (Ananas)
Almond, Bitter
Brazil Nut (Cream Nut, Butter Nut, Pura Nut, Shenut)
Cashew Nut
Hazelnut (Cobnuts, Filbert)
Macadamia (Queensland Nut)
Vanilla Beans
Alcoholic Beverages
Fermented Drinks
Fortified Beverages
Light or Still
Sparkling Wines
Aldehyde C-18
Benzyl Butyrate
Cinnamic Aldehyde
Cinnamyl Alcohol
Cinnamyl Butyrate
Cinnamyl Propionate
Cumic Aldehyde
Decyl Acetate
N-decyl Alcohol
N-decyl Aldehyde
Dodecyl Aldehyde
Ethyl Acetate
Ethyl Acetoacetate
Ethyl Benzoate
Ethyl Butyrate
Ethyl Malonate
Ethyl Myristate
Ethyl Oenanthate
Ethyl Pelargonate
Ethyl Propionate
Ethyl Sebacate
Ethyl Valerate
Geranyl Acetate
Geranyl N-butyrate
Heptylic Aldehyde
Hydrocinnamic Aldehyde
Isoamyl Acetate
Isoamyl Butyrate
Isoamyl Valerate
Isobutyl Acetate
Isobutyl Butyrate
Linalyl Acetate
Linalyl Butyrate
Methyl Anthranilate
Methyl M-anthranilate
Methyl Eugenol
Methyl Heptyne Carbonate
Methyl Isoeugenol
Methylnonyl Acetaldehyde
Methyl Phenyl Acetate
Methyl Phenyl Glycidate
-naphthol Isobutyl
-naphthyl Ethyl Ether
N-nonyl Alcohol
Nonyl Aldehyde
Octyl Acetate
N-octyl Alcohol
N-octyl Aldehyde
Octyl Butyrate
Phenyl Ethyl Acetate
Phenyl Ethyl Alcohol
Phenyl Ethyl Propionate
Rhodinyl Acetate
Rhodinyl Butyrate
Terpinyl Propionate
P-toluyl Aldehyde
Undecylenic Aldehyde
Corn Oil
Cottonseed Oil
Dlethyl Phthalate
Ethyl Acetate
Ethyl Alcohol
Glyceryl Triacetate
Isopropyl Alcohol
Polysorbate 80
Propylene Glycol
Soybean Oil
Water, Distilled
-apo-8' -carotenal
Cud Bear
Mallow Flowers
Titanium Dioxide
Zinc Oxide
Colors of Common Flavors And Perfumes
Arabic Gum
Bean Gums, Locust
Guar Gum
Karaya Gum
Tragacanth Gum
Acetic Acid, Tincture
Alpestrine, Perfume
Amber, Base
Amber, Concrete (Fixative)
Amber, Liquid (Chypre Basis)
Ambergris, Perfume Imitation No. 1
Ambergris, Perfume Imitation No. 2
Ambergris, Tincture
Bergammonia, Disinfectant
Bergamot, Essence (Natural) No. 1
Bergamot, Essence (Natural) No. 2
Bouquet, No. 1 (For Soap)
Bouquet, No. 2 (For Soap)
Calamus, Imitation No. 1
Calamus, Imitation No. 2
Camphor, Tincture
Cananga (For Soap)
Carnation, Imitation No. 1
Carnation, Imitation No. 2
Carnation (For Soap)
Carnation, Pink (Perfume)
Castor, Tincture No. 1
Castor, Tincture No. 2
Cedrela, “Wood Type”
Citronella (For Soap)
Coconut, Extract (Natural)
Coconut, Paste
Color Base Standard Formula No. 1
Color Base Standard Formula No. 2
Color Mixture
Colors (Natural Dyes)
Cover Odor, Perfume No. 1
Cover Odor, Perfume No. 2
Cover Odor, Perfume No. 3
Cyclamen, Base (Synthetic)
Cyclamen (for Soap)
Deodorant for Cream
Deodorant for Vessels
Deodorant for Water
Deodorants (Masking Agent)
Deodorants (Masking Agent) for Heavy Odors
Deodorants (Masking Agent) Grassy Odors
Diacetyl, Tincture
Eau De Cologne
Eau De Cologne (for Soap)
Eglantine (Wild Rose)
Esters, General Base
Fenugreek, Tincture
Fern (for Soap)
Floral Fragrance (for Soap)
Floral, Imitation No. 1
Floral, Imitation No. 2
Fougere, Base (Fern)
Frangipanni, Imitation No. 1
(Acutifolia, Alba, Rubra)
Frangipanni, Imitation No. 2
Frangipanni, Imitation No. 3
Frangipanni, Imitation No. 4
Freshener, Perfume
Gardenia, Base
Geranium, Imitation (for Soap)
Geranium, Synthetic
Gingergrass (for Soap)
Giroflé, Imitation No. 1
Giroflé, Imitation No. 2
Halo, Sea Salt Odor
Hawthorn (for Soap)
Heliotrope (for Soap)
Herbal Base, “Gold Water”
Hip, Extract (Natural)
Hip, Imitation No. 1
Honey, Synthetic (for Perfume)
Iris, Synthetic
Jasmine (for Brilliantine)
Jasmine “Grandiflora”
Jasmine, Imitation No. 1
Jasmine, Imitation No. 2
Jasmine, Imitation No. 3 (for Soap)
Jasmine, Infusion
Jasmine, Synthetic No. 1
Jasmine, Synthetic No. 2
Jasmine, Synthetic No. 3
Jasmine, Synthetic No. 4
Jasmine, Synthetic No. 5
Jasmine, Synthetic No. 6
Jonquil (Daffodil), Imitation
Jonquil (Daffodil), Synthetic
Lavender, Essence (Natural)
Lavender, Imitation No. 1
Lavender, Imitation No. 2
Lavender, Imitation No. 3
Lavender, Imitation No. 4
Lavender, Imitation No. 5
Lavender, Imitation No. 6
Lavender, Imitation No. 7
Lavender, Imitation No. 8
Lavender, Imitation No. 9
Lavender, Imitation No. 10
Lavender, Imitation No. 11
Lavender, Imitation No. 12 (for Soap)
Lavender, Sweet
Lilac, Imitation No. 1
Lilac, Imitation No. 2
Lilac, Imitation No. 3
Lilac, Imitation No. 4
Lilac, Imitation No. 5
Lilac, Imitation No. 6
Lilac, Imitation No. 7
Lilac, Imitation No. 8
Lilac, Imitation No. 9 (for Soap)
Lilac, Synthetic No. 1 (for Soap)
Lilac, Synthetic No. 2 (for Soap)
Lily, Base
Mignonette (Reseda)
Mimosa, Imitation
Mimosa, Synthetic
Muguet (Lily of the Valley), Imitation No. 1
Muguet (Lily of the Valley), Imitation No. 2
Muguet (Lily of the Valley), Imitation No. 3
(For Soap)
Muguet (Lily of The Valley), Synthetic No. 1
Muguet (Lily of the Valley), Synthetic No. 2
Musk, Imitation No. 1 (for Powder)
Musk, Imitation No. 2 (for Soap)
Narcissus, Imitation No. 1 (for Powder)
Narcissus, Imitation No. 2 (for Cologne)
Narcissus, Imitation No. 3 (for Cologne)
Narcissus, Imitation No. 4 “Poeticus” (for Cologne)
Narcissus, Imitation No. 5 (for Soap)
Narcissus, Synthetic No. 1
Narcissus, Synthetic No. 2
Narcissus, Synthetic No. 3
Narcissus, Synthetic No. 4
Neroli, Imitation No. 1
Neroli, Imitation No. 2
Neroli, Imitation No. 3
Neroli, Imitation No. 4 (for Soap)
Neutroleum, Deodorizing Perfume
New Mown Hay (Foin Coupé), Imitation No. 1
New Mown Hay (Fon Coupe), Imitation No. 2
New Mown Hay (Foin Coupe), Imitation No. 3
Opoponax, Imitation No. 1
Opoponax, Imitation No. 2
Opoponax, Imitation No. 3
Opoponax, Imitation No. 4 (for Soap)
Orange Blosoom, Bouquet (for Soap)
Orange Flower, Imitation No. 1
Orange Flower, Imitation No. 2
Orange Flower, Imitation No. 3
Orange Flower, Synthetic No. 4
Orchid, Imitation
Orris Root, Extract (Natural)
Orris Root, Florentine
Orris Root, Synthetic
Pathouli, Imitation No. 1 (for Soap)
Pathouli, Imitation No. 2 (Ffor Toilet Powder)
Pine, Bouquet (for Soap)
Pine, Imitation No. 1
Pine, Imitation No. 2
Pine Needle
Pine Needle, Siberian, Imitation No. 1
Pine Needle, Siberian, Imitation No. 2
Pine Needle, Siberian, Imitation No. 3
Rose, Bulgarian Type
Rose, For Cream
Rose, For Face Powder No. 1
Rose, For Face Powder No. 2
Rose, Imitation No. 1
Rose, Imitation No. 2
Rose, Imitation No. 3
Rose, Imitation No. 4
Rose, Imitation No. 5 (for Cosmetic Cream)
Rose, Imitation No. 6 (for Soap)
Rose, Imitation No. 7
Rose, Imitation No. 8
Rose, Imitation No. 9 (for Perfume)
Rose, Imitation No. 10
Rose, Imitation No. 11
Rose, Imitation No. 12
Rose, Imitation, No. 13
Rose, Imitation No. 14
Rose, Imitation No. 15
Rose, Imitation No. 16
Rose, Imitation No. 17
Rose, Imitation No. 18
Rose, Imitation No. 19
Rose, Imitation No. 20
Rose Macedone
Rose, Moss
Rose, Oil, Synthetic
Rose, Oriental
Rose Otto
Rose, Synthetic No. 1 (General Base for Rose Odor)
Rose, Synthetic No. 2
Rose, Synthetic No. 3
Rose, Synthetic No. 4 (Milk-Like Compound)
Rose, White
Sandalwood “Santal,” (for Soap)
Sassafras, for Soap No. 1
Sassafras, for Soap No. 2
Sebacic Acid, Stabilizer for Perfume
Soap, Perfume No. 1
Soap, Perfume No. 2
Soap, Perfume No. 3
Soap, Perfume No. 4
Soap, Perfume No. 5
Sweet Pea, Blossom
Syringa, Imitation No. 1
Syringa, Imitation No. 2
Tobacoo for Snuff
Tobacco Perfumes, General Basic Material No. 1
Tobacco Perfumes, General Basic Material No. 2
Tobacco, Strong Odor
Theflé (Clover, Trefoil) (for Soap)
Tuberose, Imitation (for Soap)
Tuberrose, Synthetic
Uny Cologne, Perfume Base
Vaporous Perfume, Imitation No. 1
Vaporous Perfume, Imitation No. 2
Vaporous Perfume, Imitation No. 3
Violet, For Face Powder
Violet, Imitation No. 1
Violet, Imitation No. 2
Violet, Imitation No. 3
Violet, Imitation No. 4 (for Soap)
Violet, Imitation No. 5 (for Soap)
Violet, Imitation No. 6
Violet Leaf
Violet, Synthetic
Wall Flower
Winter Green, Imitation (for Soap)
Ylang Ylang, Imitation No. 1
Ylang Ylang, Imitation No. 2
Ylang Ylang, Imitation No. 3
Ylang Ylang, Imitation No. 4
Ylang Ylang, Imitation No. 5
Ylang Ylang, Synthetic No. 1
Ylang Ylang, Synthetic No. 2
General Method for fhe Extraction of Natural Flavors From Fresh or Dry Fruits
“Neutral” Esters Mixture Base
Abbey, Benedictine Type
Advocaat (Advokaat)
Allspice, Oil
Almond, Bitter
Almond, Bitter Essence (Natural)
Almond, Bitter (for Soap)
Almond, Bitter Imitation
Almond, Bitter No. 1
Almond, Bitter No. 2
Almond, Bitter No. 3
Almond, Bitter No. 4
Almond, Bitter No. 5
Almond, Bitter No. 6
Almond, Bitter No. 7
Almond, Bitter, Synthetic No. 1
Almond, Bitter, Synthetic No. 2
Almond, Bitter, Synthetic No. 3
Almond, Bitter Synthetic No. 4
Almond, Imitation
Almond, Milk (Orzata)
Almond, Peach
Angelic, Tincture
Angostura, Bitter
Anise Base
Anisette, Oil No. 1
Anisette, Oil No. 2
Apple, Base
Apple, Essence (Natural) No. 1
Apple, Essence (Natural) No. 2
Apple, Essence (Natural) No. 3
Apple, Essence (Natural) No. 4
Apple, Essence (Natural) No. 5
Apple, Imitation No. 1
Apple, Imitation No. 2
Apple, Imitation No. 3
Apple, Imitation No. 4
Apple, Synthetic No. 1
Apple, Synthetic No. 2
Apple, Synthetic No. 3
Apple, Synthetic No. 4
Apple, Synthetic No. 5
Apple, Synthetic No. 6
Appled, Synthetic No. 7
Apple, Synthetic No. 8
Apple, Synthetic No. 9
Apple, Synthetic No. 10
Apple, Synthetic No. 11
Apple, Synthetic No. 12
Apple, Synthetic No. 13
Apple, Synthetic No. 14
Apricot, Essence (Natural) No. 1
Apricot, Essence (Natural) No. 2
Apricot, Imitation No. 1
Apricot, Imitation No. 2
Apricot, Imitation No. 3
Apricot, Imitation No. 4
Apricot, Imitation No. 5
Apricot, Synthetic No. 1
Apricot, Synthetic No. 2
Apricot, Synthetic No. 3
Apricot, Synthetic No. 4
Apricot, Synthetic No. 5
Aubepine (Hawthorn)
Banana, Essence (Natural) No. 1
Banana, Essence (Natural) No. 2
Banana, Imitation No. 1
Banana, Imitation No. 2
Banana, Imitation No. 3
Banana, Imitation No. 4
Banana, Imitation No. 5
Banana, Synthetic No. 1
Banana, Synthetic No. 2
Banana, Synthetic No. 3
Banana, Synthetic No. 4
Banana, Synthetic No. 5
Barbecue Sauce, “Hunt” Type
Barberry, Essence (Natural)
Benedictine No. 1
Benedictine No. 2
Bergamot, Flavor
Bilberry, Essence (Natural) No. 1
Bilberry, Essence (Natural) No. 2, Red
Bilberry, Essence (Natural) No. 3 Scandinavian Type
Bilberry, Imitation No. 1
Bilberry, Imitation No. 2
Bilberry, Imitation No. 3
Bitter No. 1, “Unicum”
Bitter No. 2, “Spanish”
Bitter No. 3, “Stomach”
Blackberry, Essence (Natural)
Blackberry, Imitation No. 1
Blackberry, Imitation No. 2
Blackberry, Imitation No. 3
Blackberry, Synthetic
Black Cherry
Black Currant
Black Currant, Synthetic
Black Pepper, Imitation No. 1
Black Pepper, Imitation No. 2
Blueberry, Essence (Natural)
Brandy (Cognac) No. 1
Brandy (Cognac) No. 2
Bread, Fresh Roasted Flavor
Butter, Flavor, Imitation No. 1
Butter, Flavor, Imitation No. 2
Butter, Flavor, Imitation No. 3
Butter, Flavor, Imitation No. 4
Butter, Flavor, Imitation No. 5
Butter, Flavor, Imitation No. 6
Butter, Flavor, Synthetic
Butter, Rum
Butterscotch, Imitation No. 1
Butterscotch, Imitation No. 2
Butterscotch, Imitation No. 3
Butterscotch, Imitation No. 4
Butterscoth, Imitation No. 5
Buttescotch, Imitation No. 6
Cacao, Extract (Natural) No. 1, Colorless
Cacao, Extract (Natural) No. 2, Brown
Cacao, Imitation
Cacao, Synthetic
Cake, Flavor No. 1
Cake, Flavor No. 2
Caper, Extract (Natural)
Capsicum, Extract (Natural)
Caramel, Flavor No. 1
Caramel, Flavor No. 2
Caraway, Imitation No. 1
Caraway, Imitation No. 2
Caraway, Imitation No. 3
Caraway, Imitation No. 4
Caraway, Imitation No. 5
Cardamom, Imitation No. 1
Cardamom, Imitation No. 2
Carnation, Flavor
Carrot, Extract (Natural)
Cascarilla, Tincture
Cashew, Extract (Natural)
Cassia, Imitation No. 1
Cassia, Imitation No. 2
Cassia, Imitation No. 3
Cassia, Imitation No. 4
Cassia, Imitation No. 5
Cassia, Imitation No. 6
Cassia, Imitation No. 7
Cassia, Imitation No. 8
Cassia, Imitation No. 9
Champagne, Cedar, Imitation
Champagne, Flavor
Chartreuse (Liqueur) No. 1
Chartreuse (Liqueur) No. 2
Cheese, Blue, Synthetic No. 1
Cheese, Blue, Synthetic No. 2
Cheese “Roquefort” Type
Cheese, Synthetic
Cherimoya, Synthetic
Cherry “Black”, Essence (Natural)
Cherry Blossom, No. 1
Cherry Blossom No. 2
Cherry Brandy, No. 1
Cherry Brandy, No. 2
Cherry Brandy, Synthetic
Cherry, Imitation No. 1
Cherry, Imitation No. 2
Cherry, Imitation No. 3
Cherry, Imitation No. 4
Cherry, Imitation No. 5
Cherry, Imitation No. 6
Cherry, Imitation No. 7
Cherry, Imitation No. 8
Cherry, Imitation No. 9
Cherry, Imitation No. 10
Cherry, Imitation No. 11
Cherry, Imitation No. 12
Cherry, Imitation No. 13
Cherry, Imitation No. 14
Cherry, Imitation No. 15
Cherry, Imitation No. 16
Cherry, Imitation No. 17
Cherry “Red” Essence (Natural) “Agri
Cherry, Synthetic No. 1
Cherry, Synthetic No. 2
Cherry, Synthetic No. 3
Cherry, Synthetic No. 4
Cherry, Synthetic No. 5
Cherry, Synthetic No. 6
Cherry, Synthetic No. 7
Cherry, Synthetic No. 8
Cherry, Synthetic No. 9
Cherry “Wild,” Agriot, Synthetic
Chervil, Essence (Natural)
Chocolate, Essence (For Praline Liqueur)
Chocolate, Falvor (Natural)
Chocolate, Flavor, Synthetic
Chocolate, Hardener
Chypre, Base for Bouquet (Aroma of Wine and Liquor)
Cinnamon, Imitation
Citrus Fruits, Extract from Peels
Coca, Flavor
Cocoa, Essence (Natural)
Coffee, Extract (Natural) No. 1, Brown
Coffee, Extract (Natural) No. 2, Colorless
Coffee, Extract (Natural) No. 3 Brown
Coffee, Extract (Natural) No. 4, Colorless
Coffee, Imitation No. 1
Coffee, Imitation No. 2
Coffee, Imitation No. 3
Coffee, Synthetic
Cognac, Base, Synthetic
Cognac, Imitation No. 1
Cognac, Imitation No. 2
Cognac, Imitation No. 3
Cognac, Imitation No. 4
Cognac, Imitation No. 5
Cognac, Imitation No. 5
Cognac, Imitation No. 6
Cognac, Imitation No. 7
Cola, Imitation No. 1 (Syrup)
Cola, Imitation No. 2 (Syrup)
Cola, Tincture
Coriander, Imitation No. 1
Coriander, Imitation No. 2
Cranberry, Synthetic
Cream Paste
Crystal Beverages
Cucumber, Extract (Natural)
Cucumber “Milk” (for Cosmetics)
Culinary, Extract (Natural)
Curaçao, Imitation No. 1, Liquor Base
Curaçao, Imitation No. 2, Liquor Base
Curaçao, Imitation No. 3, Liquor Base
Curaçao, Imitation No. 4 Liquor Base
Curaçao, Imitation No. 5, Liquor Base
Curaçao, Imitation No. 6
Currant, Extract (Natural) No. 1
Currant, Extract (Natural) No. 2
Currant, Imitation No. 1
Currant, Imitation No. 2
Currant, Imitation No. 3
Currant, Imitation No. 4
Currant, Imitation No. 5
Currant, Imitation No. 6
Currant, Synthetic No. 1
Currant, Synthetic No. 2
Currant, Synthetic No. 3
Currant, Synthetic No 4
Current, Synthetic No. 5
Currant, Synthetic No. 6
Date, Extract (Natural)
Date, Imitation No. 1
Date, Imitation No. 2
Date, Synthetic
Fernet “Branca” Essence
Fig, Essence (Natural)
Fortified Extracts from Vegetables
Fruit Extract, Natural Flavor
Fruit Soda
Fungi Extract (Natural)
Garlic, Extract (Natural)
Gin, Imitation
Ginger, Essence (Natural)
Ginger, Extract (Natural), “Gingerine”
Ginger, Imitation No. 1
Ginger, Imitation No. 2
Ginger, Imitation No. 3
Ginger, Imitation No. 4
Ginger, Imitation No. 5
Gingergrass (Palmarosa)
Giroflé (Clove), Tincture
Glace Cake Mix
Gooseberry, Extract (Natural)
Gooseberry, Imitation No. 1
Gooseberry, Imitation No. 2
Gooseberry, Imitation No. 3
Gooseberry, Imitation No. 4
Gooseberry, Imitation No. 5
Gooseberry, Synthetic No. 1
Gooseberry, Synthetic No. 2
Gooseberry, Synthetic No. 3
Gooseberry, Synthetic No. 4
Grape, Extract (Natural) No. 1
Grape, Extract (Natural) No. 2
Grape, Imitation No. 1
Grape, Imitation No. 2
Grape, Synthetic No. 1
Grape, Synthetic No. 2
Grape, Synthetic No. 3
Grape, Synthetic No. 4
Grape, Synthetic No. 5
Grape, Synthetic No. 6
Grape, Synthetic No. 7
Grape, Synthetic No. 8
Grape, Synthetic No. 9
Grapefruit, Synthetic
Green Gage, Extract (Natural)
Green Gage, Imitation
Guava, Extract (Natural)
Ham, Baked “Glaze”
Hazelnut, Extract (Natural)
Herbal Cream (Celery or any Other Herb)
Honey, Imitation No. 1
Honey, Imitation No. 2
Honey, Imitation No. 3
Honey, Imitation No. 4
Honey, Imitation No. 5
Honey, Imitation No. 6
Honey, Imitation No. 7
Honey, Synthetic No. 1
Honey, Synthetic No. 2 (for Perfumes)
Honey, Synthetic No. 3 (for Perfumes)
Honey, Synthetic No. 4
Honey, Synthetic No. 5
Hop, Extract (Natural)
Hop, Imitation
Hop, Synthetic No. 1
Hop, Synthetic No. 2
Hop, Synthetic No. 3
Huckleberry, Synthetic No. 1
Huckleberry, Synthetic No. 2
Juices, General
Kernel (Nut), General
Ketchup (Catsup), Mushroom Flavor
Ketchup (Catsup), Spice
Ketchup (Catsup), Tomato Flavor
Lavender, Flavor
Lemon, Extract (Natural)
Lemon, Imitation No. 1
Lemon, Imitation No. 2
Lemon, Imitation No. 3
Lemon, Imitation No. 4
Lemon, Imitation No. 5
Lemon, Imitation No. 6
Lemon, Imitation No. 7
Lemon, Imitation No. 8
Lemon, Imitation No. 9
Lemon, Imitation No. 10
Lemon, Imitation No. 11
Lemon, Imitation No. 12
Lemon, Imitation No. 13
Lemon, Imitation No. 14
Lemon, Imitation No. 15
Lemon, Imitation No. 16
Lemon, Powdered (Concentrate)
Lemon, Synthetic No. 1
Lemon, Synthetic No. 2
Lemon, Synthetic No. 3
Licorice, Root, Extract (Natural)
Lime, Extract (Natural)
Lime, Imitation
Lime, Synthetic No. 1
Lime, Synthetic No. 2
Lime, Synthetic No. 3
Lime, Synthetic No. 4
Lime, Synthetic No. 5
Malt, Extract (Natural)
Malt, Imitation No. 1
Malt, Imitation No. 2
Mandarin, Imitation No. 1
Mandarin, Imitation No. 2
Mandarin, Imitation No. 3
Mandarin, Imitation No. 4
Mandarin, Imitation No. 5
Mandarin, Imitation No. 6
Mandarin, Imitation No. 7
Mandarin, Imitation No. 8
Mandarin, Imitation No. 9
Mandarin, Synthetic No. 1
Mango, Extract (Natural)
Mango, Imitation
Maple, Flavormaple, Syrup
Maraschino, Imitation No. 1
Maraschino, Imitation No. 2
Maraschino, Imitation No. 3
Maraschino, Imitation No. 4
Mayonnaise, Real
Mayonnaise, Spice
Meat, Flavor
Melon, Extract (Natural)
Melon, Imitation No. 1
Melon, Imitation No. 2
Melon, Imitation No. 3
Melon, Synthetic No. 1
Melon, Synthetic No. 2
Melon, Synthetic No. 3
Melon, Synthetic No. 4
Melon, Synthetic No. 5
Melon, Synthetic No. 6
Melon, Synthetic No. 7
Melon, Synthetic No. 8
Mentha, Cream
Milk, Caramel
Mirabelle (Plum), Extract (Natural)
Mirabelle (Plum), Imitation
Mirabelle (Plum), Synthetic
Muguet, for Cream
Mulberry, Extract (Natural)
Mulberry, Imitation
Mulberry Synthetic No. 1
Mulberry, Synthetic No. 2
Mulberry, Synthetic No. 3
Mushroom, Imitation No. 1
Mushroom, Imitation No. 2
Nutmeg, Imitation No. 1
Nutmeg, Imitation No. 2
Nutmeg, Imitation No. 3
Nutmeg, Imitation No. 4
Nutmeg, Imitation No. 5
Nuts, Flavor for Pastry
Nuts, Kernels (General Method of Flavor Extraction)
Onion, Extract (Natural)
Onion, Imitation
Orange, Extract (Natural)
For Orange Bitter Type
For Sweet Orange Type
Orange, Imitation No. 1
Orange, Imitation No. 2
Orange, Imitation No. 3
Orange, Imitation No. 4
Orange, Imitation No. 5
Orange, Imitation No. 6
Orange, Imitation No. 7
Orange, Imitation No. 8
Orange, Imitation No. 9
Orange, Imitation No. 10
Orange, Imitation No. 11
Orange, Imitation No. 12
Orange, Imitation No. 13
Orange, Imitation No. 14
Orange, Synthetic No. 1
Orange, Synthetic No. 2
Orange, Synthetic No. 3
Orange, Synthetic No. 4
Oregano, Type
Peach, Extract (Natural)
Peach, Imitation No. 1
Peach, Imitation No. 2
Peach, Imitation No. 3
Peach, Imitation No. 4
Peach, Imitation No. 5
Peach, Imitation No. 6
Peach, Imitation No. 7
Peach, Imitation No. 8
Peach, Imitation No. 9
Peach, Imitation No. 10
Peach, Imitation No. 11
Peach, Imitation No. 12
Peach, Synthetic No. 1
Peach, Synthetic No. 2
Peach, Synthetic No. 3
Peach, Synthetic No. 4
Peach, Synthetic No. 5
Peach, Synthetic No. 6
Peach, Synthetic No. 7
Peach, Synthetic No. 8
Peach, Synthetic No. 9
Peach, Synthetic No. 10
Peach, Synthetic No. 11
Peach, Synthetic No. 12
Pear, Extract (Natural)
Pear, Imitation No. 1
Pear, Imitation No. 2
Pear, Imitation No. 3
Pear, Imitation No. 4
Pear, Imitation No. 5
Pear, Imitation No. 6
Pear, Imitation No. 7
Pear, Imitation No. 8
Pear, Imitation No. 9
Pear, Imitation No. 10
Pear, Synthetic No. 1
Pear, Synthetic No. 2
Pear, Synthetic No. 3
Pear, Synthetic No. 4
Pear, Synthetic No. 5
Pear, Synthetic No. 6
Pear, Synthetic No. 7
Pear, Synthetic No. 8
Pear, Synthetic No. 9
Pear, Synthetic No. 10
Pear, Synthetic No. 11
Pear, Synthetic No. 12
Pear, Synthetic No. 13
Pear, Synthetic No. 14
Pea, Sweet, Imitation No. 1
Pea, Sweet, Imitation No. 2
Pea, Sweet, Imitation No. 3
Pea, Sweet, Synthetic No. 1
Pea, Sweet, Synthetic No. 2
Peppermint, Imitation No. 1
Peppermint, Imitation No. 2
Peppermint, Imitation No. 3
Peppermint, Imitation No. 4
Peppermint, Imitation No. 5
Peppermint, Imitation No. 6
“Persicot,” (Peach Kernel Imitation)
Pickle Spice Salts
Pineapple (Ananas) Extract (Natural) No. 1
Pineapple Peels
Pineapple, (Ananas) Extract (Natural) No. 2
Pineapple (Ananas), Imitation No. 1
Pineapple (Ananas), Imitation No. 2
Pineapple (Ananas), Imitation No. 3
Pineapple (Ananas), Imitation No. 4
Pineapple (Ananas), Imitation No. 5
Pineapple (Ananas), Imitation No. 6
Pineapple (Ananas), Imitation No. 7
Pineapple (Ananas), Imitation No. 8
Pineapple (Ananas), Imitation No. 9
Pineapple (Ananas), Imitation No. 10
Pineapple (Ananas), Synthetic No. 1
Pineapple (Ananas), Synthetic No. 2
Pineapple (Ananas), Synthetic No. 3
Pineapple (Ananas), Synthetic No. 4
Pineapple (Ananas), Synthetic No. 5
Pineapple (Ananas), Synthetic No. 6
Pineapple (Ananas), Synthetic No. 7
Pineapple (Ananas), Synthetic No. 8
Pineapple (Ananas), Synthetic No. 9
Pineapple (Ananas), Synthetic No.10
Pineapple (Ananas), Synthetic No.11
Pistachio Nut, Extract (Natural)
Pistachio Nut, Imitation No. 1
Pistachio Nut, Imitation No. 2
Pistachio Nut, Imitation No. 3
Pistachio Nut, Imitation No. 4
Pistachio Nut, Imitation No. 5
Pistachio Nut, Imitation No. 6
Pistachio Nut, Imitation No. 7
Pistachio Nut, Imitation No. 8
Plum, Extract (Natural)
Plum, Imitation No. 1
Plum, Imitation No. 2
Plum, Imitation No. 3
Plum, Imitation No. 4
Plum, Imitation No. 5
Plum, Imitation No. 6
Plum, Synthetic No. 1
Plum, Synthetic No. 2
Plum, Synthetic No. 3
Plum, Synthetic No. 4
Plum, Synthetic No. 5
Plum, Synthetic No. 6
Pomegranate (Grenadine), Imitation No.1
Pomegranate (Grenadine), Imitation No. 2
Pomegranate (Grenadine), Imitation No. 3
Pomegranate (Grenadine), Imitation No. 4
Pomegranate (Grenadine), Imitation No. 5
Pomegranate (Grenadine), Imitation No. 6
Pomegranate (Grenadine), Imitation No. 7
Pomegranate (Grenadine), Imitation No. 8
Pomegranate (Grenadine), Synthetic
Potato, Flavor
Pound Cake, Flavor
Powdered Flavors
Praline Flavor (Crystals)
Prunelle, Extract (Natural)
Quince, Extract (Natural)
Quince, Imitation
Quince, Synthetic No. 1
Quince, Synthetic No. 2
Quince, Synthetic No. 3
Raisin, Synthetic
Raspberry, Extract (Natural) No. 1
Raspberry, Extract (Natural) No. 2
Raspberry, Extract (Natural) No. 3
Raspberry, Imitation No. 1
Raspberry, Imitation No. 2
Raspberry, Imitation No. 3
Raspberry, Imitation No. 4
Raspberry, Imitation No. 5
Raspberry, Imitation No. 6
Raspberry, Imitation No. 7
Raspberry, Imitation No. 8
Raspberry, Imitation No. 9
Raspberry, Imitation No. 10
Raspberry, Synthetic No. 1
Raspberry, Synthetic No. 2
Raspberry, Synthetic No. 3
Raspberry, Synthetic No. 4
Raspberry, Synthetic No. 5
Raspberry, Synthetic No. 6
Raspberry, Synthetic No. 7
Raspberry, Synthetic No. 8
Raspberry, Synthetic No. 9
Raspberry, Synthetic No. 10
Raspberry, Synthetic No. 11
Raspberry, Synthetic No. 12
Raspberry, Synthetic No. 13
Root Beer, Imitation
Rose, Flavor
Rose, Liquor
Rosemary, Chili
Rum, Ether Flavor
Rum, Imitation No. 1
Rum, Imitation No. 2
Rum, Imitation No. 3
Rum, Imitation No. 4
Rum, Imitation No. 5
Rum, “Jamaica,” No. 1
Rum, “Jamaica,” No. 2
Rum, Oil
Rum, Synthetic No. 1
Rum, Synthetic No. 2
Rum, Synthetic No. 3
Saint John’s Bread (Carob), Tincture
Sarsaparilla, Imitation No. 1
Sarsaparilla, Imitation No. 2
Sassafras, Imitation No. 1
Sassafras, Imitation No. 2
Sassafras, Imitation No. 3
Sassafras, Imitation No. 4
Sassafras, Synthetic No. 1
Sassafras, Synthetic No. 2
Sauce Flavors
Sauce, Flavor Base
Sauce, Soy Flavor
Savory, Oil No. 1
Savory, Oil No. 2
Scotch, Smoke Type Taste
Smoke, Flavor
Smoke, Flavor for Fish (Seasoning)
Smoke, Flavor for Meat
Spearmint-wintergreen-peppermint No. 1
Spearmint-wintergreen-peppermint No. 2
Spice, Imitation No. 1
Spice, Imitation No. 2
Strawberry, Extract (Natural) No. 1
Strawberry, Extract (Natural) No. 2
Strawberry, Imitation No. 1
Strawberry, Imitation No. 2
Strawberry, Imitation No. 3
Strawberry, Imitation No. 4
Strawberry, Imitation No. 5
Strawberry, Imitation No. 6
Strawberry, Imitation No. 7
Strawberry, Imitation No. 8
Strawberry, Imitation No. 9
Strawberry, Imitation No. 10
Strawberry, Imitation No. 11
Strawberry, Synthetic No. 1
Strawberry, Synthetic No. 2
Strawberry, Synthetic No. 3
Strawberry, Synthetic No. 4
Strawberry, Synthetic No. 5
Strawberry, Synthetic No. 6
Strawberry, Synthetic No. 7
Strawberry, Synthetic No. 8
Strawberry, Synthetic No. 9
Strawberry, Synthetic No. 10 “General Base”
Strawberry, Synthetic No. 11
Strawberry, Synthetic No. 12
Strawberry, Synthetic No. 13
Syrup, Base for Flavor (Pancake)
Syrup, Simple, Base for Flavor
Tamarind, Extract (Natural)
Tangerine, Extract (Natural)
Tangerine, Imitation No. 1
Tangerine, Imitation No. 2
Tea, Imitation No. 1
Tea, Imitation No. 2
Tea, Natural No. 1
Tea, Natural No. 2
Tea, Natural No. 3
Tobacco Formulas for Improving Flavor and Odor
Species of Natural Tobacco
Tobacco, Chewing, Flavor No. 1
Tobacco, Chewing, Flavor No. 2
Tobacco, Cigarette, Flavor No. 1
Tobacco, Cigarette, Flavor No. 2
Tobacco, Cigarette, Flavor No. 3
Tobacco, Flavor General
Tobacco, Flavor No. 1
Tobacco, Flavor No. 2
Tobacco, Flavor No. 3
Tobacco Flavor No. 4
Tobacco, Flavor No. 5
Tobacco, Flavor No. 6
Tobacco, Flavor No. 7
Tobacco, Flavor No. 8
Tobacco, Flavor No. 9
Tutti Frutti
Valerian, Root, Extract (Natural)
Vanilla, Concentrated Flavor
Vanilla, Flavor No. 1
Vanilla, Flavor No. 2
Vanilla, Flavor No. 3
Vanilla, Imitation No. 1
Vanilla, Imitation No. 2
Vanilla, Beans, Extract (Natural) No. 1
Vanilla Beans, Extract (Natural) No. 2
Vanilla Beans, Imitation
Vanilla Beans, Tincture No. 1
Vanilla Beans, Tincture No. 2
Vanillin, Crystal (Partial)
Vanillin, Flavored Mixture
Vanillin No. 1
Vanillin No. 2 (Ester Mixture)
Vanillin, Super Odor
Vanillin, Water Soluble
Vermouth, Italian Type No. 1
Vermouth, Italian Type No. 2
Vinegar, Spiced
Violet, Flavor
Walnut, Extract (Natural)
Walnut, Flavor For Ketchup
Walnut, Imitation No. 1
Walnut, Imitation No. 2
Walnut, Imitation No. 3
Walnut, Imitation No. 4
Walnut, Imitation No. 5
Walnut, Imitation No. 6
Wintergreen, Synthetic No. 1
Wintergreen, Synthetic No. 2
Wintergreen, Synthetic No. 3
Woodruff, Extract (Natural)
Woodruff, Imitation
Woodruff, Synthetic No. 1
Woodruff, Synthetic No. 2
Worcestershire Sauce No. 1
Worscestershire Sauce No. 2

^ Top

Sample Chapters

(Following is an extract of the content from the book)
Hide Down

Classification of Odours and Odorants

When one is dealing with hundreds and sometimes thousands of raw materials of widely differing characteristic odours odour intensities and chemical and physical properties it is essential to have some means of classifying them of dividing them into groups and sub groups in order to facilitate selection comparison arrangement blending and even discussion of their special features and functions. As McCartney has observed in his scholarly work on olfaction and odours the difficulties of classification are particularly well known to perfumers of course and they may often invent systems of their own for private use.

Such private systems (and there is rarely anything secret or mysterious about them) are usually based on information gained empirically added to data culled from the existing literature and other professional sources. In devising his own simplified classification of odours in 1798 Fourcroy had the good sense to point out that this division this classification is arbitrary uncertain and fragile since our sensory impressions and above all those of olfactory origin are not fixed permanent or equal in all men at the one time or in one individual at all times . Even so a perfumer s classification based on a perfumer s expertise and experience is almost certain to be of greater significance and practical utility to himself and to other perfumers than would be for example any of the non perfumery classifications based more or less strictly on botanical chemical or psychological considerations.

Published works on perfumery usually make reference to the odour classifications of Rimmel Piesse Zwaardemaker Heyninx Henning von Skramlik Matteotti and Crocker and Henderson. The last named co workers announced in 1927 their semi quantitative evaluation of odours making possible the accurate description of any odour by the simple device of a fourdigit number. Crocker and Henderson s digits represent fragrant (or sweet) acid (sour) burnt (empyreumatic) and caprylic a truly remarkable simplification. They consider that these four elementary odours arc the principal and perhaps the only units which make up all the odours we perceive. The maximum intensity of each of these elementary odours is arbitrarily allocated the number 8 so that Tonquin musk whose code number is given as 8476 is top rated as 8 for fragrance with a moderate 4 for acidity 7 for burntness and 6 for its supposed caprylic tonality. Similarly rose is coded as 6423 but what is a rose odour? A rose is a rose is a rose is a rose to Gertrude Stein and presumably also to Crocker and Henderson but to the perfumer the rose odour is a most variable quantity. As perfumers we find it difficult to acknowledge the significance of 6423. The Crocker and Henderson system and the approach that it represents have attracted a good deal of attention and support though not chiefly one assumes among practising perfumers.

Of much greater interest to the latter are some of the classifications both of complex odours and individual odorants made by perfumers. These are necessarily subjective but cannot be lightly dismissed because of this as unsatisfactory. They not only fill an immediate need but are often extremely reliable. We ourselves have for example made a comparative study with six other perfumers all working separately of a whole series of odorants assessing characteristics and analogies at three stages of evaporation. The level of agreement was very high. When making such tests much depends of course upon professional training and objectivity.

A clear distinction must here be made between attempts to classify odours e.g. as floral woody balsamic and so on and attempts to classify the actual odorants or constituents of complex odours as for example into top note middle note and base note constituents. Both systems are useful. It is probably more convenient to look first at some current classifications of odorants. Of these the most comprehensive and ambitious is Poucher s classification based on a subjective assessment of the relative duration of evaporation of some 330 perfumery chemicals essential oils and other odorous materials. Obviously this published list could be very considerably extended as W.A. Poucher has himself suggested. The main criterion of this type of classification is relative volatility which may be regarded as the vapour pressure at ordinary temperatures but in practice owing to the complex character of essential oils and flower absolutes etc. it is vastly more satisfactory to use a subjective method of comparing odorants. This Poucher accomplished by examining each material or an appropriately standardised dilution by means of smelling slips. When carrying out his tests he had to decide on what should be the end point of each odour . . . The characteristic note of some natural products may be fleeting while the residual smell lingers on. But since each aromatic substance is employed primarily for its typical odour note I decided to check and re check the point at which this distinguishing feature disappeared. Moreover I had to place a time limit on these substances of longest duration such as patchouli and oakmoss and I gave them the figure or coefficient of 100 . . . To those that evaporated in less than one day I gave the coefficient I and to the others 2 to 100. Thus eventually the Poucher classification as published comprised over 300 items each of which was distinguished by a coefficient ranging from 1 (e.g. amyl acetate) to 100 (e.g. ambergris extract vanillin and vetivert).

The basic notes begin with amyl phenylacetate and natural cinnamic alcohol proceeding through such items as methyl naphthyl ketone civet absolute hydroxycitronellal and cyclamen aldehyde to a long list of resins balsams and crystalline materials (coumarin vanillin artificial musks) aldehydes (amyl cinnamic methyl nonyl acetic phenyl acetic) all rated at 100 together with ambergris castoreum patchouli pepper sandalwood and vetivert.

These subdivisions are useful and enhance the value of the list as a source of general reference. They do not however supply a ready answer to the questions  What is a top note? What is a fixative? As Poucher himself has hastened to observe there are occasions when longer lasting odorants are used in such a quantity as to raise them temporarily into a higher category. He in fact illustrates this point by giving two simplified but characteristic formulae for a Lilac and a Hyacinth perfume respectively. Among other features the former contains 1 per cent of a 10 per cent dilution of phenylacetic aldehyde while the latter contains 10 per cent of the pure undiluted aldehyde. There is no doubt that this aldehyde acts as a top note despite its persistent character when it is utilised in a dominant proportion.

When we compare the results arrived at subjectively by different authors we are apt to find a number of discrepancies indicative of differences in opinion but in general there is a broad area of agreement. This will be seen from Tables 1 and 2 taken respectively from the published work of Ellmer and Carles.

Ellmer s classification appears to have been the first of its kind to be published. His results match fairly closely those subsequently obtained by other perfumers although few will agree with his remarkably high persistence values for rosemary oil and cuminic aldehyde nor does he appear to have given sufficient attention to the basic notes as a class. Jean Carles on the other hand seems to have over emphasised the importance of the basic notes when he writes that they will serve to determine the chief characteristic of the perfume (for) their scent will last hours on end and will be essentially responsible for the success of the perfume if any. It must be remembered however that Carles was attempting for the benefit of his students to simplify a rather complicated subject and in this respect was justifiably endeavouring to correct the error  all too common among beginners in the art of perfumery  of paying attention almost solely to the top notes or notes de depárt. In the same way he deliberately over simplified the structure of a perfume by considering it almost as a definite neatly defined architectural entity instead of a dynamic changing imbricated composition not merely existing in space but simultaneously evolving and fluctuating in time.

The importance of the basic note or accord or group of accords cannot of course be denied. Carles gives some extremely useful information on this point. Even so one must admit that there are few good perfumes and certainly no characteristically modern ones that depend chiefly for their appeal and individuality upon those constituents which have a low volatility and high tenacity. The three fundamental parts of a perfume are as Paul Jeancard suggested the head the body and the base but the relative size and strength and general assembly and behaviour of these essential parts depends upon a number of interrelated factors. Possibly the aptest name ever to have been given a perfume is Arpege because an arpeggio effect in which the notes of a chord are played successively instead of simultaneously is so admirably descriptive of perfume behaviour.

Some perfumers speak of homogeneous and oscillating odours. Thus a world famous floral bouquet perfume oscillates between a homogeneous accord consisting of a fresh jasmin note sustained by an aldehyde and bergamot oil etc. on the one side and on the other a warmer lower chord composed of ylang ylang blending into a residual note of vanilla and incense.

The type of classification of odorants shown in Tables 1 and 2 is a most useful guide and discipline but the fact must not be overlooked when resorting to such classifications that the behaviour of some of the materials involved is more complex than its mere position in a relative volatility table might indicate. This brings us back to reconsider what exactly we mean when we talk about top notes. Firstly there are the very volatile true top notes such as may be found at the beginning of Poucher s and similar tables for example ethyl and amyl acetates ethyl aceto acetate methyl amyl ketone phenylethyl acetate linalool and the citrus terpenes. There are also many relatively non volatile odorants which in addition to their long lasting character have also pronounced top note effects. In this group may be cited as common examples musk ambrette (as distinct from the ketone or xylol) the macrocyclic musks ethyl vanillin methyl nonyl acetaldehyde gamma undecalactone and Fixateur 404. It will be seen that all these have penetrating odours and it is perhaps this penetrating or piercing quality (as Henri Robert has termed it) rather than mere pungency which also gives the Middle Note odorant indole the emergent force and character of a top note.

Though complex essential oils are also capable of being assessed on the basis of relative volatility and must therefore be included in such comparative tables.

The practical value of a chart showing odorants grouped according to their relative volatilities is that it can serve as a guide to formulation and as a fertile source of suggestion. Thus as Poucher observes a perfumer beginning work on a Lilac perfume can quite simply extract from the complete chart a number of odorants (in this case as few as nine) which will give him the foundation of his perfume. These he will subdivide into the three main categories. Thus he quickly arrives at a Top note section comprising benzyl acetate terpineol and phenylethyl alcohol a Middle note section consisting of heliotropin and anisic aldehyde and a Basic section containing cinnamic alcohol hydroxycitronellal isoeugenol and phenylacetic aldehyde. He will then proceed in the usual way comparing his perfume from time to time with the natural flowers that he is trying to imitate or with some other lilac perfume that he aims at copying. At this stage he will doubtless think of other odorants in order to improve the natural character of his experimental blend to shade the odour into Pink Lilac or some other specific type or to convert the floral base into a more sophisticated blend rather than a simple floral composition. And in many instances reference to the chart can provide useful stimuli even for example (and here Carles emphasises the same technique) by offering information enabling new accords to be elaborated.

Henri Robert chief perfumer and technical manager of the Chanel Bourjois and Barbara Gould organisation has published an extremely interesting classification of odours which combines the grouping of odours as such (e.g. Lilac Muguet the Cinnamic Group Spicy Odours and Rosy Odours) with the arrangement of the respective odorants or groups of odorants in declining order of volatility starting off with Sharp Fruity and Lifting groups and ending up with Vanilla Ambergris and Animal odours. He adds I have long employed a classification of my own based like those of Cerbelaud and Billot on odour affinities. The eighteen groups themselves follow an order that I have tried (not very successfully perhaps) to render logical and which observes in principle the idea of volatility declining from top notes to base notes.

The enthusiasm shown by Poucher Carles and many other perfumers is shared by Henri Robert who adds each may have his own classification but I believe it indispensable to use one of them if it is desired to work quickly properly and lucidly. Nothing should be neglected that can liberate us from useless labour and leave us more time for that meditation during which the creation of a perfume is really accomplished.

Flower Perfumes

Not so long ago it was fashionable in some circles to decry flower perfumes. Why it was asked should a woman want to smell of flowers? The exclusion of flower perfumes from perfumery has been taking place over a long period . The flower perfume is dead . His subsequent observations however tended to modify this initial impression because he went on to praise some forgotten garden scents gave suggestions for their formulation and recommended their potential use as background odours in more sophisticated fantasy perfumes.

Despite any extravagant statements to the contrary flowers and their perfumes are still of very considerable and even basic importance to the perfumer. In the first place they are a stimulus a point of reference and a source of pleasure and invaluable information. In the second some of them are still irreplaceable raw materials despite any disadvantage that may attach to them in respect of scarcity or cost. And in the third place many flower notes or floral accords form part of the essential structure of even the most advanced and up to date fantasy perfumes. The fashionable woman may not wish to smell like a flower but neither is she improved by smelling like a crude mixture of synthetic chemicals or like a civet cat a musk deer or a dish of overripe peaches. The finished perfume is after all a balanced blend of rather widely different odorants and in it the floral note still plays a vital and even a dominant part.

We shall be giving in this chapter for each flower mentioned a list of Constituents used in its reproduction including some that may be thought of as tricks of the trade although the main object will always be to approach the true note of each flower. Secondly we shall give one two or more complete formulae by way of illustration. Here it is necessary to point out that such formulae can only be considered as the sum of the actual materials used in preparing them in the first place and that subsequent reproduction must involve olfactory adjustments in order to give the desired result.

We shall start with the more familiar perfumes based on flower notes.


Rose notes vary considerably one from another. In addition to the basic components mentioned below under Red Rose Damascene Rose and Centifolia Rose we find some important auxiliary notes in the naturally occurring esters as well as in a few aldehydes and acetals. Many other odorants also enter in relatively small amounts but with significant effect into the composition of specialised rose notes e.g. those of the tea rose.

Red Rose. This is usually considered to be the truest and finest type of rose odour. Its main constituents are rhodinol phenylethyl alcohol alpha ionone and the very useful nerol. A more flowery effect is obtained by the addition of rose absolute and Bulgarian otto. Bulgarian geranium oil can when obtainable impart a much appreciated green note.

Rose damascena. Among natural essential oils this is represented by Bulgarian rose. The basis of this odour is given by rhodinol phenylethyl alcohol geraniol ex palmarosa oil and cinnamic alcohol always in association with certain natural essential oils and esters.

Rose centifolia. The main constituents here are citronellol geraniol phenylethyl alcohol and rhodinol together with smaller amounts of adjuncts which give it a slightly sharp note such as C9 aldehyde citral etc.

Tea Rose. The basic components are citronellol phenylethyl alcohol and geraniol. The accessories that impart its special character include guaiyl acetate menthone and tuberose absolute.

Rose Maréchal Niel. In nature this is a yellow rose with a very special perfume. Basically one uses geraniol ex palmarosa oil citronellol and synthetic geraniol in association with isoeugenol benzoin and sandalwood oil etc.

White Rose. Here the base is rhodinol phenyl ethyl alcohol benzyl alcohol and linalool (to give it the slightly acidulated note by which it is identified). The blend is rounded off with a little bergamot phenylethyl acetate etc.

In all matters relating to rose perfumes one has to take into consideration the part played by Bulgarian Rose. This note is often required but unfortunately the widespread use of Bulgarian oil of rose in its pure state is limited by considerations of cost. This necessitates research into compositions i.e. diluents or extenders and these must be the best possible for the purpose. By using certain raw materials judiciously one can in fact arrive at some very interesting extenders which will blend well with the natural oil giving an excellent quality of end product at a reasonable price. The raw materials in question are relatively few in number. One thinks of phenylethyl alcohol oil of geranium such as the Geranium incolore de Grasse geraniol rhodinol I citronellol and very small quantities of nerol and farnesol.

A formula is given below. This is a convenient point to emphasise that no formula can be better than the type and quality of its individual constituents. It is therefore essential for perfumers to make their own trials and adjust their final formulae accordingly.

Some readers may be surprised to note the recurrence in certain of these formulae of branded specialities usually made by some of the leading supply houses. We make no apologies for these inclusions because they are in fact justified. Some are used because they contain new synthetic bodies that are not obtainable on the market in the pure state while others are the result of the highly skilled blending of standard ingredients that it would be extremely difficult and time consuming to copy.


Where specialities are cited under the names of specific firms this simply means that no one firm makes and offers exactly the same end product as the others. In each case one must take into account the fact that chemicals included in a process as trace impurities are not likely to be present in exactly the same pattern or proportions in a competitive product.

Examples of special shades of odour even among standard chemicals are provided for example by Givaudan s Laurine which is a hydroxycitronellal with a note of its own  often in great demand  and Lorena of Firmenich which though a nerol is yet distinguishable from other nerols.

A footnote to rose compounding modern perfumery now also makes use with restraint of rose oxide.


Rose and jasmin are still the most important flower notes used in perfumery. Singly or together they provide a conventional floral background for a great diversity of perfumes. Oil of jasmin has been the subject of much analytical research and on this basis it is possible to devise a wide range of formulae for jasmin artificial . Among the basic components one may note benzyl acetate amyl and hexyl cinnamic aldehydes benzyl alcohol formate salicylate and other esters indole and derivatives phenylethyl alcohol dimethyl benzyl carbinyl acetate hydroxycitronellal linalool linalyl acetate esters of propionic and butyric acids Peru balsam etc. To sweeten formulae for artificial asmins that may be somewhat crude and synthetic use can be made of jasmin absolute châssis which is the absolute obtained by petroleum ether or benzene extraction from jasmin flowers that have previously been treated by the enfleurage process but which have nevertheless retained some of their perfume. This must not be confused with the actual absolute of jasmin d enfleurage.

It is a principle in fine perfumery that natural materials should be used to sweeten and soften the odours of synthetic blends. When costing considerations prevent the more liberal use of naturals the result of judiciously incorporating even small quantities will usually prove conclusive.


Perfumers will be well aware of the differences that exist between these two closely related odours. Both are frequently used and it could even be said that there are relatively few compositions into which the orangeflower note does not enter. Neroli is particularly valuable in eau de Cologne and related notes. Here are some examples.

This is a useful type of formula for blending with natural neroli in certain applications as a diluent. A suggested proportion is 1 part of natural neroli oil to 2 parts of Neroli A.

In flower perfumes closely associated with the orangeblossom note e.g. honeysuckle syringa (Philadelphus coronarius) gardenia and narcissus the fruity note of Apricot is often present and should always be borne in mind.


The classic note of violet was adored by ladies at the turn of the century. Two species of the flower should be distinguished. The simple Violet (Nice or Toulouse) may be based on a blend of methyl ionone alpha ionone orris absolute or resinoid violet leaf absolute and phenylethyl alcohol. A floral note projected as it were by a trace of MNA aldehyde is imparted by jasmin or cassie. The double or Parma violet is based on varying proportions of beta ionone alpha ionone and methyl ionone together with orris resinoid or concrete a little phenylethyl alcohol methyl octin carbonate a trace of vetiver and a small quantity of hydroxycitronellal and even sometimes bergamot. Very small amounts of violet leaf absolute may be included but the green leafy note of Parma violets is much less accentuated. For imparting the necessary sweetness to the base of Parma violet use may be made of a plum or mirabelle note.

It is difficult to give a violet perfume the thrust required by modern perfumes. An interesting result has been obtained however with a very fresh lily of the valley composition used in just sufficient quantity to impart an exuberant freshness but not enough to impair the basic violet note.

Perfumes for Men

Eau de Cologne

Still in fashion after two and a half centuries eau de Cologne has rightly been described as the most famous of perfumes. Like other accepted works of art it emerged from a background of similar predecessors of which we need only name eau de Cordova and eau de ia Reine de Hongrie. All these early experiments however as well as such modifications as eau des Templiers eau d ange and eau Royale de Louis XVIII have long since faded from the scene and are now of merely historical interest.

Halfway through the seventeenth century an Italian barber Gian Paolo Feminis left his native Val Vigezzo to settle in Cologne. Merchant and perfumer as well as hairdresser he created a toilet water which he called Acqua Della Regina or Eau Admirable. Its first success appears to have been associated more closely with the medicinal and therapeutic claims made for it than with its odour. In due course Feminis grandson Giovanni (Johann or Jean) Maria Farina founded the firm of that name and re styled the toilet water Kölnisch Wasser or eau de Cologne. It is worth noting that some French and English perfumery texts of the early nineteenth century make no mention of eau de Cologne but the fame of the latter became more widespread and intense when the house of Roger & Gallet came into the picture. This they did by acquiring in 1862 from the perfumer Colas the sole interest that he had thirty years previously purchased from the Farinas. To day the two firms entitled to use the name of Jean Maria Farina are Jean Maria Farina Gegenuber dem Julichs Platz and Roger & Gallet.

In June 1960 an international celebration of the birth of eau de Cologne was held at Santa Maria Maggiore in the Val Vigezzo and a plaque unveiled to commemorate the names of Feminis and Farina. Nor must one overlook of course the creation of the 4711 brand associated with the name of Muhlens. Another noteworthy Cologne is that introduced by Atkinson in the U.K. Italy and elsewhere.

Napoleon s perfumer Hadancourt supplied the Emperor with eau de Cologne in regular quantities of twelve Winchesters each of two litres capacity for Napoleon throughout his campaigns regularly freshened up with Cologne. At this period the vinaigres (toilet vinegars) were also much in vogue.

This was allowed to stand and mature for at least 30 days prior to filtration. The true J.M. Farina formula of this period was almost certainly subjected to at least partial distillation.

Durvelle also gave a formula for a so called J.M. Farina Cologne. The following materials are macerated in 25 litres of 95º alcohol and 4 litres of water for 12 hours fresh melissa herb 10 kg rosemary 5 kg finely reduced orris root 1 kg. Distillation is then effected and the extract So obtained blended with 310 grams of bergamot oil 250 grams each of lemon and sweet orange oils 60 grams each of neroli and petitgrain oils 120 grams of lavender oil and 25 additional litres of 95° alcohol. The batch is left for one month and then filtered.

Francesco La Face the world s leading authority on Italian citrus oils has discussed most of the raw materials utilised in classic Colognes. First and foremost are the citrus oils or Hesperidaceae bergamot lemon and sweet orange followed by orangeflower neroli and petitgrain derived from the bitter orange tree. Next come the herbal oils lavender rosemary melissa (balm) and clary sage. Many other ingredients said to be used in the original formula are given in a paper by Fenaroli. They include traces of thyme wormwood calamus nutmeg hyssop caraway aniseed cinnamon and clove. Here we would point out that the clove or carnation note should be regarded as important and even indispensable in a Cologne base.

Even if one had current access to the types of material actually used in the original classic Colognes one could not use them in the same way i.e. by maceration infusion and distillation with alcohol followed by the addition of essential oils and floral waters and a period of maturation. Many efforts have been made to translate what is known of the older classic formulae into modern practice. From these we select the following

Though clary sage is well known for its ability to blend with enhance and sustain the somewhat ambered fruity note of Colognes containing it there are few published formulae for old style Colognes that do in fact mention clary sage as an ingredient. Natural unaoulterated oils of cedrat Melissa verbena and limette are nowadays difficult if not impossible to obtain. Mere traces of other oils were often included in order to impart a distinctive cachet. Among them were rose oils peppermint oil and in addition to those spicy and herbaceous oils already mentioned by Fenaroli angelica thyme cardamom fennel cumin and juniper.

In current perfumery usage one finds personal preferences among perfumers for minor additions of clove nutmeg or caraway. Thyme hyssop esteagon and myrtle have their adherents.

Variations among the major citrus constituents may include the introduction of mandarin grapefruit and lime oils. Citral verbena notes emphasise the essential freshness of the compound. Petitgrain is of course invaluable. Linalool linalyl acetate and ethyl linalyl acetate tend like oil of lavender to add depth and richness but they should not be used to excess. Nerolidol may help to round off the blend. Rose notes in particular are popular in the U.K. as modifiers of the Cologne complex. Accentuation of the rose or rosegeranium motif does not affect the initial odour or effect so much as it does the residual odour on the skin. Even a first class product of this type (and there is at least one very attractive blend) leaves behind on the skin an odour that is frankly and persistently rosaceous.

Classic eau de Cologne is a fresh and harmonious blend of predominantly citrus oils. Its fragrance is exciting refreshing altogether delightful and of short duration. That is its nature it cannot be changed without losing this unique combination of qualities. If we try to prolong its brief existence by modifying the formula which is a comparatively simple one or adding socalled fixatives we merely succeed in altering its character it is no longer a classic eau de Cologne. It can be made more sophisticated but only at the expense of its exhilarating freshness. Flowery notes can be blended with it and the results are sometimes extremely attractive but whatever their merits they are not of course true eaux de Cologne.

Varying the Cologne note can nevertheless prove to be an educational and rewarding task. There are two main approaches. One is to preserve the Cologne character while introducing a certain amount of novelty and variety. The second is to use the Cologne note as part of a distinct and different blend so that while the effect of the note is still felt its individuality is merged and subordinated in the main design.

Green hyacinthine top notes will sometimes blend effectively into Cologne compositions. Ethyl acetate (about 0.2 0.4 per cent) tends to lift the top note. Methyl nonyl acetaldehyde may be present at about 1 per cent of a 10 per cent solution or at rather higher levels in modern ambered or sophisticated Colognes. Decyl aldehyde is also useful. At the other end of the scale one considers duration of odour and fixation . As we have seen a really wellfixed long lasting Cologne would not be a Cologne at all. Where ambergris tincture or artificial ambers etc. are present in small quantities they serve in this instance more as blending and homogenising agents than as fixatives. Traces of decoiorised oakmoss can give some interesting effects.

Some years ago Wells carried out a series of tests on eau de Cologne constituents using the live human skin as the testing ground instead of the more conventional smelling slips. As when tested on the latter the odours of most of the hesperidean oils proved to be short lived. Added citral imparts improved persistence and Grasse verbena oil enhances freshness. Sweet and bitter orange oils each behave differently as one would expect but both are good and they can usefully be employed in admixture. Lime oil is forceful and too characteristic at first but soon fades. Clary sage lasts well so also does rosemary. Coriander is an extremely good skin perfume but high proportions spoil the effect of a Cologne smelt on a slip or a handkerchief. Of the shading notes we liked the odour on the skin of estragon thyme hyssop nutmeg and caraway. There is only one of the nitro musks that remains sweet and stable on the skin that is musk ambrette. Of the lower notes labdanum Peru balsam and benzoin are of interest.

It will be appreciated that a toilet water must first of all be attractive in the bottIe and in its first evaporative phase outside the bottle. It is not judged primarily by its odour on the skin but this latter is nevertheless an important factor epecially in a type of perfume that is often liberally applied to the skin surface. A careful comparison of the world s leading eaux de Colognes from the skin behaviour point of view is also enlightening. One that is distinguished by its characteristic sparkling odour in the bottle and on the handkerchief also has the maximum freshness and cleanest top note on the skin.

Many of the early Cologne formulae or traditional botanical mixes of citrus spice and herb oils were very similar to the Benedictine and related types of liqueur especially if one substituted sugar for tincture of benzoin. The dual purpose of the benzoin was to act as a fixative and ensure an opalescent effect when the Cologne was poured into water.


Toilet waters consist of perfume oil alcohol water and occasionally glycerin. Opinions vary on the subject of glycerin according to E.G. Thomssen it possesses some solvent power for the perfume concentrate but is more often used to retard volatilization of the perfume . . . when applied to the skin. The co solvent action of a few per cent of glycerin would seem to be negligible even in a perfume of low alcohol content and although Veronica Conley and others have repeated the view that glycerin may retard the evaporation of perfume from the skin we consider this possibility to be very doubtful and have said that in some cases giycerin appears to accelerate perfume evaporation from the skin rather than retard it. The presence of water however generally increases the persistence of odours on the skin.

At the time of writing there is no world wide agreement on either the perfume strength or the alcoholic strength of Toilet Waters (eaux de toilette) Eaux de Cologne Parfums de Toilette Eaux de Parfum Skin Perfume Cream Perfume or other fancifully named products which are all essentially dilute versions of the conventional alcoholic perfume. There is not even any general agreement among manufacturers on the relative strengths of these different dilutions. Many of them contain from about 3 to 8 per cent of perfume and are prepared at alcoholic strengths of 75 to 90 vols percent as compared with perfumes at strengths ranging from 12 to 22 per cent of concentrate incorporated in 95° alcohol. Many Colognes and toilet waters are however available on the market at much lower alcoholic strengths with 50° regarded in at least one country as a permissible minimum. In the production of low alcoholic Colognes etc. solubility problems naturally arise and must be dealt with by careful selection of deterpenated oils relatively soluble synethetics etc. appropriate testing chilling filtration and even in extreme cases by using solubilizing agents and co solvents to give stable clear pseudosolutions in very dilute alcohol or even in water.

While on the subject of ethyl alcohol which is of course the preferred choice in perfumery as a solvent diluent and vehicle one should note that both synthetic and fermentation grades are available. Permitted denaturants and other excise regulations vary from country to country. Methods of assessing and describing the relative strengths of alcohol also vary. An Alcohol Directive has been drafted by the E.E.C. and subjected to proposed amendments. Isopropyl alcohol has been used at various periods as a partial substitute for ethyl alcohol as a perfume vehicle but it lacks the vinous quality and other attractive properties of the latter. Some years ago a well known petroleum firm produced on the experimental scale an odourless hydrocarbon product of suitable volatility intended as a perfume solvent. It had been designed to replace alcohol in gelatin encapsulated perfumes but might equally have proved useful for other special applications e.g. as a permissible alternative to alcohol in strictly Mohammedan markets. It was never developed commercially however owing to its limited sales potential.

Alcohol remains the ideal perfume solvent with its extremely mild smooth odour which blends so well with perfumery materials. With a boiling point of 78° C it is not too volatile it permits a satisfactory evaporation of the perfume and at the same time conserves the fixative elements which ensure the tenacity that is generally expected of a good perfume.

Perfumes for Many Purposes


 We live in a world of odour just as we live in a world of light and sound observed scientists towards the end of last century. Had the noted physiologist and student of olfaction been alive today he would doubtless be astonished at the way in which the odorous character of urban life throughout the world has been extended and intensified. In the big Cities we are never far removed from the manifold activities of the perfumery industry. To compile a complete list of perfume applications is virtually impossible because new appiications are being discovered almost daily. The following list though far from complete will at least serve to indicate something of the range of perfumery uses in a modern industrialised society.

While the unspoken aim of every ambitious perfumer must surely be to create a true perfume by which one means an alcoholic extract that will attain a satisfactory measure of international celebrity it must be admitted that few perfumers ever realise this aspiration. Yet many become well known to their contemporaries as the creators of this or that soap perfume (e.g. of French Fern or Imperial Leather or Cashmere Bouquet). Still others devote most of their creative activities to the preparation of attractive stable and otherwise satisfactory perfume compositions for use in the various toiletries industrial products etc. listed above. The problems which they encounter in this work are many and some of them are considered individually in the remaining pages of this chapter.


Perfumes of outstanding performance in soap are the exception rather than the rule observes Pickthall adding as a corollary that many perfumes which give exce1lent results in a variety of other preparations will be failures in soap. It will probably be conceded by most perfumers and soap makers that their most successful perfumes have been the result of considerable trial and error. Years of experience will have shown which individual ingredients give strong and lasting effects in soap but in certain combinations or blends even these otherwise successful items will fail to produce the anticipated effects.

Four attitudes to soap perfuming should be taken into account in order to ensure the production with the minimum waste of time and effort of a successful soap perfume. They are (1) psychological and aesthetic (2) economic (3) technical and (4) chemical. The fourth term is loosely used in this context to cover physical chemical and biochemical as well as straightforward chemical reactions.

The governing factors are or should be those of a psychological aesthetic and artistic character. While it is most desirable that the soap perfumer should have a sound scientific knowledge of the probable behaviour of aldehydes ketones esters and so on when they are incorporated in a soap base it is even more essential that he shall be an artist in perfumery able to understand anticipate and satisfy changing fashions in the public taste for perfumes. In addition to this he ought to be capable of selecting and using his raw materials to the best economic advantage. The techniques that he employs in his work are likewise extremely important for they should be adopted and modified in such a way as to save him the maximum amount of time and trouble both during the creation and compounding of the perfume and its subsequent shelf testing in soap.

On this matter of technique one method has been described in some detail  I carry out initial small scale experiments in compounding by utilising a 10 ml pipette with each ml divided into tenths this affording a convenient means for making the compound on a percentage basis. All liquids are thus measured by volume while all solid materials are weighed out in the usual manner. When at work I normally start with 5 pipettes steeping in alcohol and another 5 standing in a draining rack. Also useful are 1 ml pipettes graduated in 1 100ths together with a 10 ml cylinder similarly graduated in l 100ths and a 50 ml cylinder. If a graduated cylinder is used the larger volumes of liquid can be poured directly into it followed by the smaller quantities duly pipetted. This method of volumetric compounding is more economical rapid and generally convenient than the use of a balance though it has of course its disadvantages. There is always a probability of introducing errors unless specific gravities are duly taken into account when translating volumetric into mass measurements for example when working by volume one could be using 1 ml of a product with a specific gravity of 0.85 thereby using only 0.85 grams or 1 ml of a substance with an s.g. of 1.2 thereby using 1.2 g. A further margin of error may be introduced when pouring or pipetting viscous liquids. This can be minimised by using 50 50 or weaker dilutions of such materials or eutectk mixtures (such as equal parts of cinnamic alcohol and methyl cinnamate). The dilutions to maintain the odour intensity may be made in other active constituents of the formula rather than with alcohol diethyl phtbalate or similar solvents. The problem of contamination is best dealt with by using a fresh pipette for each raw material and by keeping current stocks of the latter to a minimum i.e. in bottles ranging from about 15 ml to 100 ml capacity. It is most desirable to avoid the use of small bottles that have a neck orifice too narrow for the easy introduction of the pipette. Steeping alcohol should be changed frequently.

The soap perfumer is never allowed to forget that the perfume soap system presents certain unique and sometimes unpredictable behavioural phenomena. For that reason he is obliged to test his perfume in a standard soap base and not merely on smelling strips at all stages of its development. He tests his raw materials in this way often at the level of 1 per cent in soap and may similarly test partial blends in soap before finally completing his perfume and testing that. The small perfumed soap tablets may be examined immediately stored wrapped or unwrapped and then re examined or subjected to acceleration tests with U.V. light etc. In this way it is possible to assess odour and colour effects and record them over a prolonged period filing the information so obtained for future reference.

Many lists and other compilations of data relating to individual perfumery materials and their behaviour in soaps have been published.

As pointed out by Sfiras the keeping properties of perfume in soap are governed by various physico chemical phenomena. He specifically mentions the absorption of perfume by the soap evaporation of perfume the autoxidation of both soap and perfume and the reactivity of soap due to the equilibrium RCOONa + H2O RCOOH + NaOH. In regard to the first two factors Pickthall s work shows that some perfumes will tend to remain in the aqueous phase some will probably be absorbed on the outer surface of the soap micelle some may be absorbed between the methyl tails and some apparently become orientated in the micelle forming a more or less stable complex.

Esters. Pickthall pointed out in 1956 that the effect of acetylation is to increase strength of odour. He was of course comparing the odour yield in soap of acetates and their parent alcohols. Dervichian of the Institut Pasteur reiterated this fact in 1961 with the esters there is no association hence no solubilisation and as a direct consequence the esters give in soaps a more intense odour than do the alcohols. Decyl alcohol gives a feeble odour decyl acetate a strong odour geraniol a feeble odour tetrahydrogeraniol which is a saturated compound and thus more soluble gives a very weak odour while geranyl acetate gives a very strong odour. So if we mix geraniol and geranyl acetate in a soap it is the acetate which will dominate whereas in an alcoholic solution the reverse will hold good. These results are valid for so called anhydrous soaps which actually contain a certain proportion of water (5 10 per cent).

Esters vary considerably one from another in their stability and odour yield in soap but as a group they are valuable constituents of soap perfumes. Among the carbinol esters styrallyl (methyl phenyl carbinyl) acetate is outstanding.

Alcohols. As we have seen alcohols tend to give uniformly lower odour values in soap than do the corresponding esters but for the same reason they usually remain well fixed in the soap and their odours though mild are persistent. Fatty alcohols have weak odours but unsaturation in the chain improves the odour performance. Of the terpene alcohols the most important are linalool and terpineol. Anisic alcohol is useful in lilac and muguet.

Ketones. In this group performance varies considerably. Among those substances with a good odour yield in soap are the ionones benzophenone p. methoxy and p. methyl acetophenones and elhyl amyl ketone.

Aldehydes and Acetals. Many aldehydes aromatic terpene and aliphatic are widely used in soap perfumery despite their reactivity and relative instability as a class. Cyclamen amyl cinnamic and lauric aldehydes are among those which can give very satisfactory results. In some cases the aliphatic aldehydes are pre mixed with the corresponding alcohols with the intention of improving their stability by facilitating the formation of hemi acetals. Recent work seems to show that this practice has little effect.

Dimethyl and diethyl acetals cannot be used as simple substitutes for the corresponding aldehydes. Their odours are different and their performance not always encouraging.

Other Constituents. Of the ethers several are distinguished by their satisfactory odour effects in soap. Examples are amyl benzyl ether p.cresol methyl ether and diphenyl ether and diphenyl oxide. Terpenes can give quite interesting results. As one would expect the odour yield of phenols ranges from moderate to poor. Eugenyl acetate gives a stronger odour than eugenol or isoeugenol but it discolours and is not entirely stable. The effect of methylation as in eugenol methyl ether is to enhance the strength of odour. Of the lactones one may note such useful items as gamma nonyl lactone gamma undecalactone and coumarin.

 The soap perfumer of to day  observed Roy Huttleston in 1961  would look askance at some of the perfume formulations used years ago. A typical formula contained large percentages of such natural products as neroli cassia cloves geranium lavender patchouli rosemary sandalwood and vetiver with only small proportions of coumarin and a few other synthetic aromatic chemicals and isolates. This was indeed the picture up to the beginning of World War II. A French soap perfume formula used in the late 1920 s included for example six difterent essential oils four resins and resin oids one concrete oil and three straight synthetics (amyl salicylate and two nitro musks). Today the cost of such a perfume would be prohibitive and in the case of a widely distributed soap a sufficiency of some of the natural materials might not always be available. Advances in synthetic chemistry have provided the soap perfumer with an ever increasing range of synthetic odorants from which he can select products of good odour and colour stability capable of creating new perfume effects. At the same time the production of synthetic odorants aids materially in standardising quality and stabilising costs. Even so the utility of the natural products should not be underestimated. Although one is now frequently obliged to reverse the practice so reasonably recommended in the Twenties (concentrate on natural products and add to their effect by the use of isolates and synthetics) it is still true to say as he did then that Peru balsam styrax olibanum and other resinoids can form the backbone of many soap perfumes which indeed could scaredy exist without them. Other writers have also emphasised the usefulness of resinoids as soap perfume constituents and fixatives.

Soap Perfumery Fashions. It is essential for the creative soap perfumer to keep in touch with changing fashions not only in his own country but throughout the world. Changing Fashions in Soap Perfumes was the subject of a paper read some years ago at a meeting of the Société Technique des Parfumeurs de France. In it the author discussed a selection of the newer odorants available at that time under such headings as floral spicy woody fruity and musk amber notes. After suggesting applications for these odorants which included a few essential oils as well as several synthetics and products of only partially disclosed constitution he proceeded to a critical analysis of some of the best European perfumed soaps of that period. This is the kind of investigation that would normally form part of the background routine of a typically enterprising soap perfumer.

White toilet soaps with restrained clean smelling odours were made fashionable in the 1935 1945 period. Since then soaps have become more colourful and their perfumes more pronounced distinctive and even exotic. Colour in soap is not merely decorative it also successfully conceals any slight discoloration caused by the use of certain odorants which for this reason would not be acceptable in pure white soaps. Perfumes are also used in some brands at least in higher concentration or at higher intensity – this serving to perfume the skin after the bath or shower. Greater care is also taken to avoid the use of perfumery materials known to irritate sensitive skins.

Other workers have recommended that soap perfumes should frequently consist of the smallest possible number of ingredients and that above all each odorant should be selected for its strength of odour and stability in soap base. What is not wanted is a formula containing passengers which do not contribute effectively to the final result and which reduce the perfume s overall intensity.

Natural Odours of Aromatic Chemicals


DESCRIPTION Chemicals with a penetrating pleasant odor similar to the fragrant resin or oleoresin flowing from various plants containing benzoic or cinnamic acid.

COMMON VARIETIES Peru Balsam from Central America Tolu Balsam from Colombia Copaiba Balsam from Brazil and Venezuela Balm of Gilead shrub Middle East Africa Canada Balsam North America fir tree Benzoin from Styrax tree in Southeast Asia and Sumatra

CHEMICALS FOR SCENTMATCHING (1) Benzyl benzoate (2) Benzylcinnamate (3) Cinnamic alcohol (4) Cinnamyl acetate (5) Cinnamyl anthranilate (6) Cinnamyl butyrate (7) Cinnamyl isobutyrate (8) Isobutyl cinnamate (9) Phenyl ethyl salicylate

(10) Phenyl propyl cinnamate


DESCRIPTION Chemicals with odor similar to the citrus trees and shrubs flowers (Aurantiaceae). Citrus is a generic name referring to a group of trees and shrubs of the Rutaceae whose fruits are edible with juice rinds oils and acids all useful.

Citrus trees are thorny evergreen with long shiny pointed leaves. The leaves and the flowers are fragrant. Citrus plants grow in warm climates where there is no frost or wind. They contain large amounts of vitamins and minerals and are high in Vitamin C. Ripe citrus fruits are yellow to orange red in color.

Bergamot is only used in perfumery and as a histological clearing agent.

COMMON VARIETIES Citrus aurantium sweet orange Citrus aurantium var. Bigaradia bitter orange Citrus medica citron Citrus medica var. Limonum lemon Citrus medica var. Acida lime Citrus decumana grapefruit (shaddock) Citrus bergamia bergamot

CHEMICALS FOR SCENT MATCHING (1) Acetate C 12 (2) Alcohol C 7 (3) Alcohol C 8 (4) Alcohol C 9 (5) Alcohol C ll undecylenic (6) Alcohol C ll undecylic (7) AldehydeC 8 (8)Citral (9) Linalyl buttyrate (10) Methyl heptenone pure (11) Methyl nonyl ketone (12) Neryl acetate


DESCRIPTION Chemicals with a fatty odor

CHEMICALS FOR SCENT MATCHING (1) Benzyl laurate (2) Nonoie acid



DESCRIPTION Chemicals with a floral odor

CHEMICALS FOR SCENT MATCHING (1) Acetanisole (2) Acetate C 9 (3) Acetate C 11 (4) (Amyl cinnamic alcohol (5) Anisyl alcohol (6) Benzyl isovalerate (7) Benzyl propionate (8) Cinnamic alcohol (9) Cinnamyl acetate (10) Cinnamyl propionate (11) Ethyl laurate (12) Hydroxycitronellal dimethyl acetal (13) Linalool (14) p Methyl acetophenone (15) Methyl phenyl carbinol (16) Methyl phenyl propionate (17) Phenyl acetaldehyde (18) Phenyl acetic acid (19) Phenyl propyl acetate (20) Phenyl propyl cinnamate (21) Phenyl propyl formate


DESCRIPTION Chemicals with a grassy odor



DESCRIPTION Chemicals with green top note and floral background odor

CHEMICALS FOR SCENT MATCHING (1) Methyl heptyne carbonate (2) Methyl octine carbonate (3) Methyl phenyl carbinol (4) Phenyl acetaldehyde


DESCRIPTION Chemicals with a harsh pungent penetrating odor

CHEMICALS FOR SCENT MATCHING (1) Aldehyde C 7 (2) Methyl quinoline


DESCRIPTION Chemicals with an herb like odor



DESCRIPTION Chemicals with an odor similar to green leaves

CHEMICALS FOR SCENT MATCHING (1) Acetal R (2) p Methyl hydratropie aldehyde (3) Phenyl acetaldehyde dimethyl acetal (4) Phenyl acetaldehyde eth­ylene acetal (5) Phenyl ethyl acetal (6) n Propyl acetal


DESCRIPTION Chemicals with a persistent odor similar to musk



DESCRIPTION Chemicals with an almost imperceptible odor

CHEMICALS FOR SCENT MATCHING (1) Benzyl alcohol (2) Cetyl alcohol


DESCRIPTION Chemicals with a waxy odor



DESCRIPTION Chemicals with an odor similar to wood

CHEMICALS FOR SCENT MATCHING (1) Dimethyl benzyl carbinol (2) Isobutyl quinoline (3) Isopropyl quinoline (4) Vetacetyl

Simulated Flower Scents


BOTANICAL Family Leguminosae Genus Acacia Species Greggii

OCCURRENCE About450 kinds of acacia grow in tropical regions and lands close to the tropics. Twelve varieties grow in the U.S. mostly in Texas and California.

DESCRIPTION The flowers are bright yellow with a sweet odor. In some plants they cluster together forming balls. Others have white flowers.

CHEMICALS FOR SCENT MATCHING (1) Anisic aldehyde (2) Isobutyl benzo­ate (3) Methyl anthranilate (4) Phenyl acetic aldehyde (5) Yara yara

Basis (1) Alcohol C 9 (2) Alcohol C I0 (3) Aldehyde C 9 (4) Aldehyde C­ 10


BOTANICAL Family Rutaceae Genus Citrus Species Bergamia Subspecies Risso. Poiteau

CHEMICALS FOR SCENT MATCHING (1) Citronellyl acetate (2) Limonene (3) Linalool (4) Linalyl acetate (5) Linalyl formate (6) Linalyl propionate (7) Menthanyl acetate (8) Terpinyl acetate


BOTANICAL Family Caryophyllaceae Genus Dianthus Species Caryophyllus (common garden)

DESCRIPTION There are pink purple red white and yellow carnation flowers

CHEMICALS FOR SCENT MATCHING (1) Acetyl isoeugenol (2) Benzyl isoeugenol (3) Coumarin (4) Eugenol (5) Methyl eugenol (6) Methyl isoeugenol (7) Nerol (8) Terpineol (9) Vanillin

Basis (1) Alcohol C 9 (2) Aldehyde C 8 (3) Aldehyde C 9


BOTANICAL Family Leguminosae Genus Cassia Species Acutifolia Angustifolia (Indian) Matilandia (wild Surna) Fasciculate (partridge peas) there are more than 400 species of cassia

CHEMICALS FOR SCENT MATCHING (1) Anisic aldehyde (2) Anisyl acetate (3) Ionone (4) Methyl acetophenone

Basis (1) Aldehyde C 8 (2) Aldehyde C 9 (3) Aldehyde C 10 (4) Aldehyde C 12


BOTANICAL Family Compositae Genus Chrysanthemum

DESCRIPTION A strong scented shrubby herb growing in temperate regions worldwide. The name is from the Greek word meaning golden flower. Because of its beautiful and abundant blooms it is extensively cultivated. The flowers are white yellow pink or red.

CHEMICALS FOR SCENT MATCHING (1) Phenylethyl formate


SYNONYMS Eugenia caryophyllata

BOTANICAL Family Myrtaceae Genus Caryophyllus Species Aromaticus

OCCURRENCE The tree grows wild in the Moluccas (also called Spice Islands) in Sumatra Jamaica West Indies and Brazil

DESCRIPTION The name clove refers to the dried flowers (buds) of a tropical tree.

The buds are picked before they open to become a flower. They are used as a spice and are called cloves.

An oil distilled from the dried buds and stems is widely used in the flavor and perfumery industry.

CHEMICALS FOR SCENT MATCHING (1) Caryophyllene (2) Eugenol (3) Eugenol acetate (4) Isoeugenol phenyl acetate


SYNONYMS New mown hay Fain coupe

BOTANICAL Family Leguminosae Genus and Species See Common Varieties

COMMON VARIETIES Trifoliumpratense (red clover) Trifoliumrepens. hybridum crimson. incarnatum alsike (white clover) Melilotus alba (white sweet clover) Melilotus officinalis (yellow sweet clover) Melilotus indica (sour clover)

DESCRIPTION About 300 different kinds of clover plants exist. growing wild in fields lawns and along roadsides. Some species are cultivated for livestock food.

Red clover provides pasture for farm animals and enriches the soil because of its high nitrogen content. It is also the main source of hay. White clover in addition to being a valuable pasture corp provides its blossom nectar to bees for the making of superior honey. Alsike clover. alSb called Swedish clover is white or pink in color. Crimson clover has a variety of colors red. white yellow scarlet. It is also called Italian type clover. Sweet clover is called Melilot from the Latin word miele (honey). Sour clover is primarily used for improving the soil.

Clover generally has three leaves. According to superstition four leaved clover brings luck while five or six leaved clovers bring misfortune.

CHEMICALS FOR SCENT MATCHING (1) Benzylidene acetone (2) Benzyl salicylate (3) Coumarin (4) Linalyl acetate (5) Methyl salicylate


BOTANICAL Family Primulaceae (primrose) Genus Cyclamen

CHEMICALS FOR SCENT MATCHING (1) Cyclamen aldehyde (2) Hydroxy­ citronellal (3) Ionone (4) Rhodinol

Basis (1) Alcohol C 9 (2) Aldehyde C 9 (3) Aldehyde C 10 (4) Aidehyde C 12



BOTANICAL The ferns are classified into 12 families.

The most common and widely distributed family is Family Polypodiaceae which includes several genera Genus Pteridium (the bracken) Adiantum (maid­enhair) Dryopteris (woodfern) Asplenium (spleenworts) Polypodium (polypody) Comptosorus (walking leaf) Onoclea (sensitive fern) Polystichum (holly ferns).

Other families include Family Trichomanes (filmy fern) Lygodium (climbing fern) Ophioglossum (adder s tongue) Botrychium (rattlesnake fern)

OCCURRENCE Ferns grow worldwide but more commonly in the tropics. About 300 varieties grow in the U.S.

DESCRIPTION There are about 10 000 kinds of ferns in different sizes and shapes from moss like to 40 foot tall trees. The fern is a flowerless plant.

The basic fougere perfume is made by simple blending of oakmoss coumarin and amyl salicylate or just oakmoss and amyl salicylate.

CHEMICALS FOR SCENT MATCHING (1) Ethyl phenyl acetate (2) Isobutyl salicylate (3) Linalyl acetate.

Basis (1) Alcohol C 8 (2) Alcohol C 9 (3) Aldehyde C 8 (4) Aldehyde C 9 (5) Aldehyde C 1O (6) Aldehyde C II (7) Aldehyde C 12 MNA

Basic Flavouring Materials



The esters of amyl benzyl butyl ethyl methyl and propyl alcohols with acetic butyric cinnamic formic oenanthic propionic salicylic and valerie acids are extensively used in synthetic compounding of flavors. Pure aldehyde C 14 (peach) and aldehyde C ­16 (strawberry) are also extensively employed. Ethyl vanillin is used in the preparation of flavors for beverages ice creams cakes cookies etc.

The esters are listed by similarity of flavor and odor to each specific natural product. Esters much closer in flavor and odor to the natural product. They may be categorized as

Fruity Esters with a generic fruity flavor and odor

Fresh fruits Esters specifically similar in flavor and odor to each fruit

Tropical fruits Esters specifically similar in flavor and odor to each fruit

Dry fruits Esters specifically similar in flavor and odor to each fruit

Naturally sweet products Esters specifically similar in flavor and odor to each product

Daily beverages Esters specifically similar in flavor and odor to each product

Alcoholic beverages Esters specifically similar in flavor and odor to each product

Dairy products Esters specifically similar in flavor and odor to each product

Culinary additives Esters specifically similar in flavor and odor to each product

Stabilizers Esters specifically similar in flavor and odor to each product

During compounding the quantity of each ester or other chemical is determined by the individual s taste and all factory sense in matching the flavor and odor of each natural product. These are reported as a general orientation for the compounding of flavors and perfumes.

Natural Flavors Simulated with Synthetic Chemicals


CHEMICALS FOR FLAVOR MATCHING (1) Acetate C 8 (2) Acetate C 9 (3) Aldehyde C 7 (4) Allyl pelargonate (5) Amy benzoate (6) Amyl butyrate (7) Benzyl butyrate (8) Benzyl isoamyl ether (9) Benzyl isovalerate (10) Cinnamyl anthranilate (11) Cinnamyl butyrate (12) Cinnamyl isobutyrate (13) Cinnamyl propionate (14) Ethyl acetate (15) Ethyl amyl ketone) (16) Ethyl laurate (17) Ethyl pelargonate (18) Ethyl propionate (19) Ethyl sebacate (20) Linalyl butyrate (21) Linalyl isobutyrate (22) p Methyl acetophenone (23) Methyl phenyl propi­onate (24) Phenyl ethyl isobutyrate (25) Phenyl ethyl isovalerate (26) Phenyl ethyl propionate (27) Octyl butyrate (28) Octyl formate (29) Rhodinyl butyrate (30) Santalyl phenyl acetate (31) Terpinyl propionate



BOTANICAL Family Rosaceae Genus Malus Species Pumila (cultivated) Wild (Malus sylvestris Malus baccata)

OCCURRENCE There are about 30 varieties of wild apples worldwide seven are found in the U.S.A.

CHEMICALS FOR FLAVOR MATCHING (1) Acetaldehyde (2) Aldehyde C 11 (undecylenic) (3) Aldehyde C 14 pure (4) Aldehyde C I6 (5) Amyl acetate (6) Amyl butyrate (7) Amyl propionate (8) Amyl valerianate (9) Citronellol (10) Ethyl acetate (II) Ethyl butyrate (12) Ethyl malonate (13) Ethyl nitrate (14) Ethyl phenyl glycidate (15) Geranyl butyrate (16) Isoamyl butyrate (17) Isoamyl valerianate (18) Isovaleraldehyde  (19) Malic acid (20) Nerolidol (21) Tartaric acid


BOTANICAL Family Rosaceae Genus Prunus Species Armeniaca

CHEMICALS FOR FLAVOR MATCHING (1) Aldehyde C 9 (2) Aldehyde C I4 pure (3) Amyl acetate (4) Amyl butyrate (5) Amyl propionate (6) Benzyl acetate (7) Benzyl butyrate (8) Benzyl cinnamate (9) Benzyl propionate (10) Cinnamyl alcohol (11) Citronellol (12) Ethyl acetate (13) Ethyl benzoate (14) Ethyl butyrate (15) Ethyl cinnamate (16) Ethyl formate (17) Ethyl oenanthate (18) Ethyl salicylate (19) Ethyl valerianate (20) Eugenol (21) Heliotropin (22) Isoamyl butyrate (23) Phenyl ethyl acetate (24) Phenyl ethyl alcohol


BOTANICAL Family Berbindaceae Genus Berberis Species Vulgaris Thunbergie (Japanese) Julianae (Wintergreen)

OCCURRENCE Grows in Europe and western Asia

CHEMICALS FOR FLAVOR MATCHING (1) Aldehyde C 10 (2) Amyl acetate (3) Amyl butyrate (4) Ethyl acetate (5) Ethyl benzoate (6) Ethyl butyrate (7) Ethyl formate (8) Ethyl oenanthate (9) Ethyl salicylate (10) Tartaric acid

USES AND NOTES The berries can be eaten Beverages wine berberi through fermentation with honey hydromele Syrups jams and jellies


BOTANICAL Family Ericaceae Genus Vaccinium Species Corymbosium Va­riety Scandinavian

CHEMICALS FOR FLAVOR MATCHING (1) Amyl butyrate (2) Ethyl acetate (3) Ethyl benzoate (4) Ethyl salicylate (5) Rhodinyl butyrate


BOTANICAL Family Rosaceae Genus Rubus Species Occidentalis

CHEMICALS FOR FLAVOR MATCHING (1) Anisaldehyde (2) Diphenyl oxide (3) Ethyl oenanthate (4) Heliotropin (5) Ionone (6) Methyl anthranilate (7) Methyl ionone (8) Neryl isovalerate (9) Rhodinyl butyrate (10) Vanillin


BOTANICAL Family Saxifrage Genus Ribes Species Nigrum

CHEMICALS FOR FLAVOR MATCHING (1) Amyl formate (2) Ethyl benzoate (3) Isoamyl formate (4) Linalyl isobutyrate (5) Linalyl propionate (6) Methyl propionate

USES AND NOTES Black currant has a sharper flavor than the red currant. It is more popular in Canada and in Europe than in the U.S. where the red currant (Ribes rubrum) is used to make jellies jams wines and pies.

The golden currant (Ribes adoratum) or Missouri flowering currant grows wild in North America. White and yellowish currants are usually eaten as a fresh dessert.


BOTANICAL Family Ericaceae Genus Vaccinium Species Corymbosium (high blueberry) Pennsylvanium (low blueberry)

CHEMICALS FOR FLAVOR MATCHING (1) Amyl propionate (2) Methyl ionone (3) Rhodinyl butyrate

USES AND NOTES Desserts creams pastries pies


BOTANICAL Family Roseaceae Genus Prunus (sweet) Species Avium. Cerasus (sour)

CHEMICALS FOR FLAVOR MATCHING (1) Allyl benzoate (2) Allyl isovalerate (3) Amyl cinnamate (4) Amyl formate (5) Anisaldehyde (6) Anisyl acetate (7) Anisyl propionate (8) Benzaldehyde pure (9) Benzyl acetate (10) Cinnamaldehyde (11) Ethyl acetate (12) Ethyl benzoate (13) Ethyl butyrate (14) Ethyl oenanthate (15) Metbyl benzyl propionate (16) Rhodinyl formate (17) Rhodinyl isovalerate (18) p Tolyl acetaldehyde (19) Tolyl aldehyde (20) Vanillin

USES AND NOTES Several kinds of cherry trees are planted for ornamental reasons Japanese cherry trees are world famous for their beauty


BOTANICAL Family Ericaceae Genus Vaccinium Species Macrocarpon Oxycoccus (European)

CHEMICALS FOR FLAVOR MATCHING (1) Alcohol C 8 (2) Alcohol C 10 (3) Aldehyde C 10 (4) Acetophenone (5) Amyl alcohol (6) Benzaldehyde pure (7) Benzyl acetae (8) Benzyl alcohol (9) Benzyl formate (10) Ethyl acetate (11) Ethyl benzoate (12) Ethyl isovalerate (13) Ethyl salicylate (14) Eucalyptol (15) Furfural (16) Isoamyl acetate (17) Isoamyl alcohol (18) Isoamyl butyrate (19) Isobutyl alcohol (20) Linalool (21) Phenyl ethyl alcohol (22)  Terpineol (23) Valeraldehyde (24) Vaniliin

USES AND NOTES Sauces jellies and juices


BOTANICAL Family Palmaceae Genus Phoenix Species Dactylifera

CHEMICALS FOR FLAVOR MATCHING (1) Aldehyde C 14 pure (2) Cinnamic aldehyde (3) Isoamyl acetae (4) Isoamyl butyrate (5) Isobutyl phenyl acetate (6) Eugenol

USES AND NOTES A tall palm with pinnate leaves yielding dates. Dates are generally marketed dried. A liquor called arrack is made from dates. Ground dates yield oil roasted ground dates can substitute for coffee


BOTANICAL Family Moraceae Genus Ficus Species Carica

CHEMICALS FOR FLAVOR MATCHING (1) Maltol (2) Ethyl cinnamate


BOTANICAL Family Saxifragaceae Genus Ribes Species Hirlillum (American) Grossularia (European)

CHEMICALS FOR FLAVOR MATCHING (1) Aldehyde C 14 (2) Ethyl acetate (3) Ethyl benzoate (4) Ethyl oenanthate

USES AND NOTES Gooseberries are related to the currants. They may have prickly hairy or smooth surfaces. They are used in preserves and pies.


BOTANICAL Family Vitaceae Genus Vitis Species Vinifera

OCCURRENCE There are various species of grapes in America Labrusca or fox Aestivalis Norton Delaware Vulpina Rotundifloria or Muscadine Catawba red (winemaking) Concord purple black Niagara green Scuppernong

CHEMICALS FOR FLAVOR MATCHING (1) Aldehyde C 14 (2) Amyl butyrate (3) Cinnamyl propionate (4) Ethyl acetate (5) Ethyl formate (6) Ethyl oenanthate (7) Ethyl pelargonate (8) Ethyl salicylate (9) Eugenol (10) Isoeugenol (11) Methyl anthranilate (12) Methyl  naphthyl ketone (13) Phenyl ethyl anthrani­late (14) Tartaric acid (15) Seedless raisin (unbleached) (16) Lees (dregs) extract (sediment of wine during fermentation)


BOTANICAL Family Rutaceae Genus Citrus Species Paradisi. Decumana Maxima (Shaddoh or pomelo)

CHEMICALS FOR FLAVOR MATCHING (1) Ethyl acetate (2) Citral (3) Li­monen (4) Linalool (5) Linalyl acetate

USES AND NOTES Some grapefruits have no seeds but their taste is not as good as those with seeds. Commercial seedless grapefruits include the marsh variety as well as ruby and Thompson varieties the popular pink grapefruits. No difference in taste is detectable between the pale yellowish and the pink fleshed grapefruit. Grapefruit and tangerine trees produce a fruit called tangelo.


BOTANICAL Family Cannabinaceae Genus Humulus Species Lupulus (Euro­pean) Americanus (wild American) Scandens (Japanese)

CHEMICALS FOR FLAVOR MATCHlNG (1) Anisaldehyde (2) Butyric acid (3) Capraldehyde (4) Cinnamic aldehyde (5) Ethyl acetate (6) Ethyl isovalerate (7) Ethyl oenanthate (8) Ethyl pelargonate (9) Eugenol (10) Heliotropin (11) Limonene (12) Phenyl ethyl acetate

USES AND NOTES Hops are used to make beer


BOTANICAL Family Ericaceae Genus Gaylussacia Species Baccata

CHEMICALS FOR FLAVOR MATCHING (1) Anethole (2) Ethyl acetate (3) Isoamyl acetate (4) Isoamyl butyrate (5) Ethyl benzoate (6) Linalool

USES AND NOTES The berries have a sweet juice. They are blue black.


BOTANICAL Family Rutaceae Genus Citrus Species Limonia

CHEMICALS FOR FLAVOR MATCHING (1) Acetaldehyde (2) Alcohol C 8 (3) Aldehyde C 8 (4) Aldehyde C 9 (5) Amyl valerianate (6) Citral (7) Citral dimethyl acetal extra (8) Ethyl acetate (9) Ethyl nitrate (10) Geraniol (11) Geranyl acetate (12) Linalyl acetate


BOTANICAL Family Rutaceae Genus Citrus Species Aurantifolia

CHEMICALS FOR FLAVOR MATCHING (1) Amyl acetate (2) Amyl butyrate (3) p Cymene (4) Dipentene (5) Ethyl acetate (6) Hydroxycitronellal (7) Linalyl acetate (8) Methyl nonyl acetaldehyde (9) Terpineol


BOTANICAL Family Rosaceae Genus Rubus Species Ursin us

CHEMICALS FOR FLAVOR MATCHING (1) Aldehyde C 9 (2) Benzoic acid (3) Amyl acetate (4) Ethyl acetate (5) Ethyl benzoate (6) Ethyl butyrate (7) Ethyl formate (8) Ethyl oenanthate (9) Tartaric acid

USES AND NOTES The flavor of loganberry is sharp. On cooking however it improves and is used for canned jams juices or dried.


BOTANICAL Family Rutaceae Genus Citrus Species Nobilis Variety Deliciosa

CHEMICALS FOR FLAVOR MATCHING (1) Aldehyde C 8 (2) Aldehyde C 9 (3) Aldehyde C 10 (4) Amyl acetate (5) Citral (6) Ethyl anthranilate (7) Ethyl formate (8) Ethyl salicylate (9) Linalool (10) Tartaric acid


Aromatic Chemicals Used in Flavour Compounding



PHYSICAL PROPERTIES Specific gravity 0.958 0.965 (15 C) Refractive index 1.4460 1.4500 (20 C)




DERIVATION By crystallization from anise or fennel oil synthetically from p cresol

PHYSICAL PROPERTIES Specific gravity 0.984 0.987 (15 C) Refractive index 1.5570 1.5610 (20 C) Boiling point 233 234 C Melting point 22.5 23 C




CAS NUMBER 123 11 5


DERIVATION From anethole or anisole by oxidation (anisole is obtained from sodium phenate methyl chloride heating phenol with methyl alcohol)

PHYSICAL PROPERTIES Specific gravity 1.119 1.123 (25/25 C) Refractive in­dex 1.570 1.574 (20 C) Boiling point 245 249 C Melting point 0 to 4 C




CAS NUMBER 100 52 7

DERIVATION (a) Air oxidation of toluene with uranium or molybdenum oxides as catalysts (b) Chlorination of toluene with further hydrolysis by acid or alkali

PHYSICAL PROPERTIES Specific gravity 1.041 1.046 (25/25 C) Refractive in­dex 1.5440 1.5465 (20 C) Boiling point 179.5 C




PHYSICAL PROPERTIES Specific gravity 1.006 1.009 (25/25 C) Refractive in­dex 1.4920 1.4960 (20 C) Boiling point 242 C



SYNONYMS Ethyl vanillin

CAS NUMBER 121 32 4


DERIVATION From vanilla beans

PHYSICAL PROPERTIES Melting point 76.5 78 C



CAS NUMBER 99 49 0


DERlVATION d form main component of caraway and dill oils l form occurs in spearmint synthetically from d limonene and rectified

PHYSICAL PROPERTIES Specific gravity 0.960 0.964 (15 C) Refractive index 1.4995 1.1502 (20 C) Boiling point 225 231 C



CAS NUMBER 104 55 2


DERIVATION (a) From Ceylon and Chinese cinnamon oils (b) By condensation of benzaldehyde and acetaldehyde

PHYSICAL PROPERTIES Specific gravity 1.047 1.051 (25/25 C) Refractive in­dex 1 6200 1.6230 (20 C) Boiling point 118 120 C



CAS NUMBER 104 54 1


DERIVATION (a) From cassia oil or cinnamon oil (b) By reduction of cinnamic aldehyde

PHYSICAL PROPERTIES Specific gravity 1.029 1.034 (30 C) Refractive index 1.572 1.577 (30 C) Boiling point 256.6 C Melting point 32 34 C




PHYSICAL PROPERTIES Specific gravity 1.010 1.015 (25/25 C) Refractive in­dex 1.5250 1.5280 (20 C) Boiling point 262 C




PHYSICAL PROPERTIES Specific gravity 1.029 1.033 (25/25 C) Refractive in­dex 1.5320 1.5370 (20 C)



CAS NUMBER 5392 40 5


DERIVATION (a) Isolated by fractional distillation of lemongrass (b) Synthetically by oxidation of geraniol neroli or linalool by chromic acid

PHYSICAL PROPERTIES Specific gravity 0.881 0.889 (25/25 C) Refractive in­dex 1.4820 1.4910 (20 C) Boiling point 228 229 C



CAS NUMBER 106 22 9


DERIVATION (a) From citronella oil geranium oil savin oil (b) Reduction of citronella or geraniol

PHYSICAL PROPERTIES Specific gravity 0.852 0.860 (25/25 C) Refractive in­dex 1.4530 1.4600 (20 C) Boiling point 224.4 C



CAS NUMBER 91 64 5


DERIVATION (a) By heating salicylic aldehyde sodium acetate and acetic anhy­ dride (b) Isolated from tonka beans

PHYSICAL PROPERTIES Boiling point 301.7 C Melting point 68 70.5 C



CAS NUMBER 122 03 2


PHYSICAL PROPERTIES Specific gravity 0.976 0.980 (25/25 C) Refractive in­dex 1.530 1.5340 (20 C) Boiling point 235 237 C



SYNONYMS Acetate C 10


DERIVATION By gently boiling capric aldehyde and glacial acetic acid (for several hours together) in presence of zinc dust or powder precipitating with water and distilling under reduced pressure

PHYSICAL PROPERTIES Specific gravity 0.862 0.866 (25/25 C) Refractive in­dex 1.4250 1.4300 Boiling point 103 104 C



SYNONYMS Alcohol C 10 1 decanol


DERIVATION Reduction of coconut oil fatty acids from C9 olefin and gas synthesis by otto process

PHYSICAL PROPERTIES Specific gravity 0.826 0.832 (25/25 C) Refractive in­dex 1.4350 1.4390 (20 C) Boiling point 231 C



SYNONYMS Aldehyde C 10 n decanal


DERIVATION Occurs in lemongrass citronella orange and many other oils Synthetically by oxidation of alcohol C 10 or reduction of decanoic acid (capric acid). Capric acid is obtained by fractional distillation of coconut fatty acids

PHYSICAL PROPERTIES Specific gravity 0.822 0.830 (25/25 C) Refractive in­dex 1.4270 1.4300 (20 C) Boiling point 207 209 C



SYNONYMS Aldehyde C 12 MNA lauric aldehyde lauryl aldehyde

CAS NUMBER 112 54 9


PHYSICAL PROPERTIES Specific gravity 0.822 0.830 (25/25 C) Refractive in­dex 1.4310 1.4360 (20 C) Boiling point 184 185 C



CAS NUMBER 141 78 6


DERIVATION By heating acetic acid and ethyl alcohol in presence of sulfuric acid and distilling

PHYSICAL PROPERTIES Specific gravity 0.905 (15 C) Refractive index 1.3726 (20 C) Boiling point 75.7 78 C




DERIVATION By the reaction of metallic sodium on ethyl acetate and distilling

PHYSICAL PROPERTIES Specific gravity 1.026 (15 C) Boiling point 181 C



CAS NUMBER 93 89 0


DERIVATION By heating ethyl alcohol and benzoic acid in presence of sulfuric acid and distilling

PHYSICAL PROPERTIES Specific gravity 1.043 1.046 (25/25 C) Refractive in­dex 1.5030 1.5060 (20 C) Boiling point 260 C



CAS NUMBER 105 54 4


DERIVATION By heating ethyl alcohol and butyric acid in presence of sulfuric acid and distilling

PHYSICAL PROPERTIES Specific gravity 0.881 0.886 (15 C) Refractive index 1.396 1.492 (20 C) Boiling point 120 125 C



CAS NUMBER 105 53 3


DERIV ATION By passing hydrogen chloride into cyanoacetic acid dissolved in absolute alcohol and distilling

PHYSICAL PROPERTIES Specific gravity 1.055 (15 C) Boiling point 198.4 C



SYNONYMS Ethyl tetradecanoate


PHYSICAL PROPERTIES Boiling point 295 C Melting point 10 11 C



SYNONYMS Ethyl heptanoate cognac oil


DERIVATION By heating oenanthic acid and ethyl alcohol in presence of sulfuric acid and distilling (oenanthic acid is obtained by oxidizing heptanol with potassium dichromate and sulfuric acid)

PHYSICAL PROPERTIES Specific gravity 0.871 0.872 (15 C) Refractive index 1.414 (20 C) Boiling point 187 189 C

CHARACTERISTICS AND USES Cognac wine fruity soft drinks (apricot cherry currant gooseberry grape artificial essence of bourbon etc.)


SYNONYMS Ethyl nonylate


DERIVATION From alcoholic solutions of various essences

PHYSICAL PROPERTIES Specific gravity 0.863 0.865 (25/25 C) Refractive in­dex 1.421 1.426 (20 C) Boiling point 227 231 C




Solvents are liquids which dissolve other substances (solute) generally a solid without any change in the chemical composition (solution).

The proportion of the substances in a solution depends on the solvent solubility which is limited to a certain quantity at a given temperature and pressure. The solution when a maximum of solute is dissolved is termed saturated. A supersaturated solution can be created but may be turbid and may further precipitate.

Solvents are classified by their dissolving capacity. The aromatic hydrocarbon solvents have a higher solvent capacity than the aliphatic type. The organic solvents are classified in groups based on their chemical composition and are given with some examples

Hydrocarbons aliphatic N aphtha and its fractions

           Hydrocarbons aromatic Benzene toluene xylene

Alcohols Ethyl alcohol ethylene methyl alcohol

Ethers Dimethyl ether ethylene glycol monoethyl ether

Ketones Acetone methyl ethyl ketone methyl isobutyl ketone

Esters Butyl acetates butyl lactate ethyl acetate

Chlorinated Chloroform tetrachloroethane monochlorobenzene

Nitrated Nitroethane nitromethane 1 nitropropane 2 nitropropane nitro­ benzene

Amines Monoethanolamine diethanolamine pyridine

Liquefiedgases Ammonia sulfur dioxide

Solvents Commonly Used for Flavors and Perfumes


SYNONYMS Dimethyl ketone 2 propanone ketopropalle pyroacetic ether

CAS NUMBER 67 64 1



DERIVATION Oxidation of cumene or butane or oxidation of isopropyl alcohol with a metallic catalyst by product of synthetically produced glycerol

CHARACTERISTICS Form Volatile liquid Color Colorless Odor Sweetish

PHYSICAL PROPERTIES Specific gravity 0.792 Refractive index 1.3591 Boiling point 56.2 C Flash point 15 F Solubility Miscible with water alcohol ether chloroform and most oils

USES AND NOTES General solvent (not for flavors)



SYNONYMS Benzol cyclohexatriene

CAS NUMBER 71 43 2



DERIVATION Fractional distillation of coal tar catalytic reforming of petroleum

CHARACTERISTICS Form Liquid Color Colorless or yellowish Odor Aromatic

PHYSICAL PROPERTIES Specific graviry 0.8790 (20/4 C) Refractive index 1.50110 Flash point 12 F Solubility Miscible with alcohol ether acetone carbon tetrachloride slightly soluble in water

USES AND NOTES General solvent (not for flavors)



SYNONYMS Maize oil mazola oil maydol

BOTANICAL Family Graminaceae Genus Zea Species Mays

CHARACTERISTICS Form Oil Color Yellowish or brownish Odor Faintly oily

PHYSICAL PROPERTIES Specific gravity 0.914 0.921 Refractive index 1.464­ 1.468 Flashpoint 610 F Solubility Soluble in chloroform ether slightly soluble in alcohol

USES AND NOTES Food pharmaceuticals


BOTANICAL Family Malvaceae Genus Gossypium Species Herbaceum oil

CHARACTERISTICS Form Oil Color Yellowish Odor Odorless

PHYSICAL PROPERTIES Specific gravity 0.915 0.921 Refractive index 1.4645 1.4655 Solubility Slightly soluble in alcohol soluble in ether chloroform carbon disulfide

USES AND NOTES Cosmetics soaps foods


SYNONYMS Hexamethy1ene hexanaphthene hexahydro benzene

CAS NUMBER 110 87 7



DERIVATION From crude petroleum catalytic hydrogenation of benzene

CHARACTERISTICS Form Mobile liquid Color Colorless Odor Pungent

PHYSICAL PROPERTIES Specific gravity 0.779 (20/4 C) Refractive index 1.4264 (20C) Boiling point 80.7 C Flash point 1 F Solubility Insoluble in water soluble in alcohol

USES AND NOTES Essential oils extraction solvent for resins fats oils



SYNONYMS Ethyl phthalate 1 2 benzenedicarboxylic acid diethyl ether

CAS NUMBER 84 66 2



DERIVATION Reaction of phthalic anhydride with ethyl alcohol

CHARACTERISTICS Form Liquid Color Colorless Odor Odorless

PHYSICAL PROPERTIES Specific gravity 1.120 Refractive index 1.5002 (25 C) Flashpoint 325 F Solubility Insoluble in water miscible with almost all esters and hydrocarbons

USES AND NOTES Perfumery solvent fixative denaturant



SYNONYMS Acetic ether acetic ester acetic acid ethyl ester vinegar naphtha

CAS NUMBER 141 78 6



DERIVATION By heating acetic acid and ethyl alcohol in presence of sulfuric acid and distilling

CHARACTERISTICS Form Liquid Color Colorless Odor Fragrant

PHYSICAL PROPERTIES Specific gravity 0.8945 Boiling point 77 C Flashpoint 24F Solubility Slightly soluble in water soluble in alcohol ether chloroform

USES AND NOTES Flavors pharmaceuticals



SYNONYMS Grain alcohol ethanol

CAS NUMBER 64 17 5



DERIVATION Wine from grapes .molasses from ethylene

CHARACTERISTICS Form Volatile liquid Color Colorless Odor Pleasant

PHYSICAL PROPERTIES Specific gravity 0.816 (15.56C) Refractive index 1.3651 Boiling point 78 C Flash point 55 F Solubility Miscible with water ether chloroform acetone

USES AND NOTES Solvent for essential oils flavors perfumes beverages medicine



SYNONYMS Glycerin glycyl alcohol 1 2 3 propanetriol trihydroxy propane

CAS NUMBER 56 81 5



DERIVATION By product of soap from propylene and chlorine

CHARACTERISTICS Form Syrupy liquid Color Colorless Odor Odorless

PHYSICAL PROPERTIES Specific gravity 1.2620 Boiling point 290 C Flash point 320F Solubility Soluble in water alcohol insoluble in ether benzene chloroform

USES AND NOTES Perfumery cosmetics liqueurs flavors


SYNONYMS Triacetin 1 2 3 propanetriol triacetate triacetyl glycerin enzactin

CAS NUMBER 102 76 1



DERIVATION From glycerol and acetic acid

CHARACTERISTICS Form Liquid Color Colorless Odor Fatty

PHYSICAL PROPERTIES Specific gravity 1.160 (20 C) Refractive index 1.4312 (20 C) Boiling point 258 260 C Flash point 300 F Solubility Slightly soluble in water soluble in alcohol ether

USES AND NOTES Perfumery cosmetics flavors medicine


CAS NUMBER 100 54 3



DERIVATION Fractional distillation from petroleum (molecular sieve process)

CHARACTERJSTICS Form Liquid Color Colorless Odor Faint

PHYSICAL PROPERTIES Specific gravity 0.65937 (20/4 C) Refractive index 1.37486 (20 C) Boilingpoint 68.742C Flash point 9 F Solubility Insoluble in water soluble in alcohol acetone ether

USES AND NOTES Solvent for vegetable oils



SYNONYMS Isopropanol dimethyl carbinol 2 propanol petrohol

CAS NUMBER 67 63 0



DERIVATION From propylene and sulfuric acid with hydrolyzing

CHARACTERISTICS Form Liquid Color Colorless Odor Fragrant

PHYSICAL PROPERTIES Specific gravity 0.7863 (20/20 C) Refractive index 1.3756 (20 C) Boiling point 82.4 C Flash point 59 F Solubility Soluble in water al­cohol ether

USES AND NOTES Solvent for essential oils flavors perfumes



SYNONYMS POE (20) sorbitan oleate Tween 80

CAS NUMBER 9005 65 6 (generic)

DERIVATION Condensation of ethylene glycol or ethylene oxide and water

CHARACTERISTICS Form Viscous liquid Color Yellowish

PHYSICAL PROPERTIES Solubility Soluble in water and almost all solvents

USES AND NOTES Cosmetics flavors pharmaceuticals


SYNONYMS Methyl glycol 1 2 propanediol 1 2 dihydroxypropane methylethylene glycol

CAS NUMBER 57 55 6



DERIVATION Hydration of propylene oxide

CHARACTER1STCS Form Viscous liquid Color Colorless Odor Odorless

PHYSICAL PROPERTIES Specific gravity 1.0381 (20/20 C) Refractive index 1.4293 (27 C) Boiling point 187.3 C Flash point 210 F Solubility Soluble in water alcohol and almost all solvents

USES AND NOTES Flavors perfumes syrups soft drinks


SYNONYMS Soya bean oil soy oil Chinese bean oil

BOTANICAL Family Leguminosae Genus Soya Species Hispida oil

CHARACTERISTICS Form Oil Color Yellowish or brownish Odor Character­istic

PHYSICAL PROPERTIES Specific gravity 0.924 0.929 Refractive index 1.4760­ 1.4775 Flashpoint 540F Solubility Soluble in alcohol ether chloroform carbon disulfide



SYNONYMS Hydrogen oxide

CHARACTERISTICS Color Colorless Odor Odorless

PHYSICAL PROPERTIES Specific gravity 0.997 Refractive index 1.333 Boiling point 100 C

USES AND NOTES Universal solvent


Colorants for Flavours and Perfumes

Natural Colors


SOURCE/COLOR Alkanet root red

BOTANICAL Family Boraginaceae Genus Alkanna Anchusa Species Tinctoria

USES AND N0TES The color red is prepared from its roots (alkannin). It is employed for coloring wines cosmetics and fats and as an astringent.


SOURCE/COLOR Annatto yellowish red

BOTANICAL Family Bixaceae Genus Bixia Species Orellana

USES AND NOTES The color is made from the pulp around the seeds of this tropical tree (bixion). It is employed in coloring butter margarine cheese oils ice cream ice cream cones sausage casing bakery goods and spices. It is also used in combination with turmeric.


SOURCE/COLOR Apo 8 carotenal orange 6

USES AND NOTES It is an aldehydic carotenoid found in spinach oranges grass tangerine and marigold. It is used in coloring fat products such as cheese margarine and oils.


SOURCE/COLOR Beets (dehydrated powder) dark red

BOTANICAL Family Chenopodiaceae (goosefoot) Genus Beta Species Vulgaris

USES AND NOTES The beet roots contain red pigments (betacyanins) and yellow pigments (betaxanthins) collectively classified as betalains. Of the betacyanins 75 95% is betanin which is the main colorant of the beet.

The colorant is employed in candies yogurts ice creams cakes powdered drinks soft drinks gelatin dessert meat substitutes. Much of the world s sugar comes from the sugar beet.


SOURCE/COLOR Buckthorn yellow

BOTANICAL Family Rhamnaceae Sapodilla Genus Rhamnus. Brumelia Species Cathartica Lycioides

USES AND NOTES Native to Eurasia with small greenish flowers black berries


SOURCE/COLOR Campeachy wood (longwood) blue

BOTANICAL Family Leguminosae Genus Haematoxylon Species Campeachianum

USES AND NOTES A crystalline phenolic compound is also in the log wood and employed mainly as a biological stain.


SOURCE/COLOR Canthaxanthin orange

BOTANICAL Family Thallophyta Genus Cantharellus Species Cinnabarinus

USES AND NOTES Initially isolated from an edible mushroom (Cantharellus cinnabarinus) and also found in marine algae in sea trout daphnia salmon brine shrimps and several species of flamingo.

Canthaxantin is available as a dry powder and used as a colorant (orange 8) for tomato fruit drinks baked goods sausage products.


SOURCE/COLOR Caramel dark brown

USES AND NOTES Caramel is a burned sugar generally made from liquid corn syrup. The major use for caramel is in soft drinks particularly root beer and cola. Other uses include the coloring of syrups rum candies preserves canned meat products cough syrups and pharmaceuticals.


SOURCE/COLOR Catechu brown

BOTANICAL Family Acacia Genus Catechu Species Gambier

USES AND NOTES It is obtained from a tropical Asiatic plant. It is used in dyeing and tanning and in medicines. Catechu makes brown dyes used in coloring leather. It is also used to dye and print cotton cloth such as calico.


SOURCE/COLOR Chlorophyll green

USES AND NOTES The extraction is made with strong alcohol from green plants. It is employed as a coloring agent and deodorant. The solution is blue green with a deep red fluorescence. The extract which is waxy is soluble in alcohol ether chloroform acetone carbon disulfide and benzene. As a green colorant it is used mostly for soaps oils fats waxes liquors preserves cosmetics toothpaste medicine.


SOURCE/COLOR Cochineal carmine red 4

ZOOLOGICAL Family Cochinilla Genus Dactylopius Species Coccus Variety Cacti

USES AND NOTES A red dyestuff made from the dried bodies of the female cochineal insects which feed on cactus (Coccus cacti).

It is used in candies pill coating and as a biological stain and indicator.


SOURCE/COLOR Cud bear yellow

BOTANICAL Family Lichens Genus Lecano raceal Species Rocellaceae

USES AND NOTES A reddish purple powder colorant from lichens. It is used for coloring syrups elixirs etc.


SOURCE/COLOR Curcuma root yellow

BOTANICAL Family Zingiberaceae Genus Curcuma Species Longa



SOURCE/COLOR Erythrosine brown

USES AND NOTES Brown powder forming cherry red solution in water. It is employed for coloring foods.


SOURCE/COLOR Guanine iridescent

USES AND NOTES A crystalline substance obtained from fish scales consisting of two purines guanine and hypoxanthine. The colorant content of guanine is about 75 97% while that of hypoxanthine is about 3 25% depending on fish type and respective tissue. Fishes providing this material include herrings alewives and menhades.

The material is not a colorant but a pearly white silvery iridescent employed in lipsticks nail polishes and eye makeup.


SOURCE/COLOR Huckleberry black red

BOTANICAL Family Ericaceae Genus Gaylussacia Species Baccata

USES AND NOTES American shrubs related to the blueberries and bearing edible fruits


SOURCE/COLOR Indigotin indigo blue

BOTANICAL Family Leguminosae Genus Indigofera Species Indigo

USES AND NOTES A tropical plant growing mostly in Bengal Java and Guatemala. Indigotin is a dark blue crystalline powder with coppery luster. It is insoluble in water alcohol and ether and soluble in chloroform glacial acetic acid and nitrobenzene.

Indigotin is also produced synthetically from aniline and chloroacetic acid. The resultant phenyl glycine is further fused with alkali and sodium amide.



BOTANICAL Family Leguminosae Genus Pterocarpus Species Marsupium

USES AND NOTES Kino is a plant which grows in western Africa East India and Sri Lanka. It is used as an astringent.


BOTANICAL Family Malvaceae Genus Malva Arborea Species Silvestris. Rotundifolia

USES AD NOTES It is used mostly in coloring vinegar and food products.


SOURCE/COLOR Paprika and paprika oleoresins red

BOTANICAL Family Solanaceae Genus Capsicum Species Tetragonum

USES AND NOTES Paprika has a brighter red color and a sweeter taste than the red cayenne pepper. Both paprika and its oleoresin have a good tinctorial capacity in producing orange to bright red color.


SOURCE/COLOR Pernambuco wood red

BOTANICAL Family Leguminosae Genus Caesalpina Species Echinata

USES AND NOTES A wood from Lima Peru and Nicaragua used as a dye.


SOURCE/COLOR Pokeberry red or pockeweed

BOTANICAL Family Phytolaccaceae Genus Phytolaceae Species Americana

USES AND NOTES The pokeweed plant has dark purple juicy berries and white flowers. Its roots are poisonous.


SOURCE/COLOR Safflower yellow

BOTANICAL Family Compositae Genus Carthamus Species Tinctorius

USES AND NOTES An edible drying oil is obtained from the seeds of this herb which has orange or red flowers. The color is prepared from the flower s heads.


SOURCE/COLOR Saffron yellow

BOTANICAL Family lridaceae Genus Crocus Species Sativus

USES AND NOTES Saffron has a sweet scent and taste. It is a brilliant yellow dye. Four thousand flowers of saffron make about one ounce of commercial saffron which is used in flavoring and coloring candy and in cooking.


SOURCE COLOR Sandalwood red

BOTANICAL Family Santalaceae Genus Santalum Species Album

USES AND NOTES A kind of scented wood from a tropical tree the sandalwood oil is pressed out and used for perfume cosmetics and medicine


SOURCE/COLOR Tartrazine yellow 5

USES AND NOTES A bright orange yellow powder. It is employed as a color additive in foods drugs and cosmetics. It is freely soluble in water.


Stabilizers are substances which are added to another substance to prevent or retard any alteration. Those utilized in compounding flavors and perfumes are of vegetal origin occurring as natural gums.

Gums occur as exudations from various trees and shrubs in tropical areas. They differ from natural resins in their chemical composition and solubility properties. Some contain acidic components while others are neutral. Their main use is as protective colloids and emulsifying agents in food products andpharmaceuticals as sizing agents for textiles and in the electrolytic deposition of metals. They are insoluble in alcohol and other solvents but are generally soluble or dispersible in water.

Seaweeds of cold water especially brown algae are also used as stabilizers.


BOTANICAL Family Rhodophyceae Genus Gelidium Gracilaria Gigartina Species Corneum Lichenoides Speciosa

DERIVATION Agar is a dried gelatinous substance obtained by concentration and decoction of seaweeds or marine algae.

Derived from red algae mostly from the Gelidium and Gracilaria they occur in tropical Asia and along the Pacific coast of the U.S. There are four kinds of algae brown red green and blue green. Blue green algae are toxic to fish and other aquatic life. Algae range in size from single cell to giant (over 200 ft) and include many kinds of seaweeds.

Algae are employed as food supplements soil conditioners animal feeds and as a source of iodine.

PROPERTIES Agar agar is translucent or pale powder. It is strongly hydrophilic absorbing 20 times more than its weight of cold water and forming hard gel at about 40C

USES Agar agar is used in confectionery meat and poultry desserts beverages ice cream foods laxatives pharmaceuticals dental impressions laboratory reagents photographic emulsions.


SYNONYMS Acacia gum

BOTANICAL Family Leguminosae Genus Acacia Species Senegal

DERIVATION Exudes from the stems of Acacia Senegal and other related species

PROPERTIES Thin flakes powder or granules white or yellowish almost odorless with a mucilaginous taste soluble in water yielding a viscous solution insoluble in alcohol

USES Arabic gum is used in food preparation as a thickening agent and colloidal stabilizer adhesive for multipurpose use in textile printing ink pharmaceuticals and cosmetics


BOTANICAL Family Leguminosae Genus Robinia (black) Species Pseudoacacia Kelseyi Neomexican (New Mexico) Viscosa (clammy)

DERIVATION From the long locust pods which are filled with wax coated seeds

PROPERTIES It swells in cold water with increasing viscosity on heating insoluble in organic solvents

USES Food stabilizer thickener emulsifier cosmetics sizing and finishes for textiles pharmaceuticals paints.


SYNONYMS Irish moss

BOTANICAL Family Gigartinaceae Genus Chondrus Species Crispus

DERIVATION Extracted from a phycocolloid (algae) called carrageen or Irish moss in the red algae (Chondrus and several species). Growing in rocky places off Great Britain Ireland east coast of southern Canada New England and southern New Jersey.

PROPERTIES It is hydrophilic and readily absorbs water

USES Emulsifier in food products especially chocolate milk toothpastes cosmetics pharmaceuticals


BOTANICAL Family Leguminosae Genus Cyamopsis Species Tetragonoloba

DERIVATION From the Cyamopsis tetragonoloba cultivated in Pakistan for live­ stock feeding.

The water soluble part of the flowers (85%) is called guaran  which consists of 35% galactose and 63% mannose.

PROPERTIES White or yellowish powder. It is soluble in water with a thickening power 5 8 times greater than starch.

USES The seeds contain a chemical compound called mannolagactan used in foods cosmetics pharmaceuticals thickener emulsifier paper manufacture.


SYNONYMS Sterculia gum Indian tragacanth

BOTANICAL Family Sterculiaceae Genus Sterculia Species Urens

DERIVATION Exudes from Indian trees of the genus Sterculia

PROPERTIES White to dark brown or black. Its viscosity decreases over six months storage. It forms a translucent colloidal gel in water.

USES Ice cream and other food products adhesives thickener emulsifier tooth­ pastes.


 description From pektos a Greek word meaning congealed. Pectin is a substance found in many fruits and vegetables which yield pectin when boiled. It is a white amorphous carbohydrate substance that forms a gelatinous mass in the cooking of fruits or vegetables causing gelation.

Extraction Extraction Method from Juice (1) Use filtered clear juice (2) Add double volume of alcohol 95% (3) Precipitate in a gelatinous mass (4) Filter through linen or canvas (5) Press (6) Dry (7) Dissolve in distilled water (8) Filter several times (9) Add hydrochloric acid (10) Precipitate again with alcohol 95%.

Extraction from Dry Peels of Fruits (1) Use raw shredded or dry stored peels (2) Add distilled water (3) Boil in a stainless steel vessel (4) Add diluted hydrochloric acid or sulfuric acid (5) Heat at 93 100 C for one hour (6) Yields water soluble pectin.

Pectin Acid Extraction (1) Use ripe fruit washed with a sodium hydroxide solution (2) Dry (3) Wash with isopropyl alcohol (4) Dry (5) Add hydrogen chloride alcoholic solution (10%) (6) Dry (7) Wash again with isopropyl alcohol (8) Dry.

Extraction of Pectin from Lemon Fruit (1) Use lemon rinds boiing in several changes of alcohol (2) Heat in an autoclave for one hour at 110C in presence of distilled water (3) Filter (4) Precipitate using double doubel volume of acidified alcohol (5) Remove acidity by washing with alcohol or ether (6) Dry in a vacuum dessicator over sulfuric acid.

Extraction of Pectin from Orange Fruit (1) Boil oranges in a reflux condenser eight times for 20 min each time (2) Add 6 liters of alcohol 95% (3) Press the mass between each boiling (4) Add 3 liters of distilled water to the final press cake (5) Heat the mixture in autoclave for one hour at 110C (6) Press (7) Filter until clear (8) Add double volume of alcohol 95% with 7 ml of concentrated hydrochloric acid per liter (9) Press the coagulum in a cloth (10) Wash the pectin with ether (11) Dry in a vacuum dessicator over sulfuric acid Yield 20% of pectin

Pectin General Preparation (A) (1) Use mass (2) Add hot diluted acid (Cu Al metal satls) at 70 90C (3) Precipitate by adding ethyl or isopropyl alcohol (4) Wash with distiled water to remove the metal (5) Dry (6) Pulverize.

(B) (1) Use mass (2) Add hot distiled water (acidified) (3) Precipitate by adding Al salts (4) Dry at low temperature (5) Pulverize.

(C) (1) Use mass (2) Add water (3 Filter (4) Concentrate (5) Precipitate by adding alcohol (6) Recover alcohol.

(D) (1) Use mass (2 Add diluted acid (3) Dehydrate by evaporation (4) precipitate by adding alcohol or acetone.


SYNONYMS Gum dragon

BOTANICAL Family Leguminosae Genus Astragalus Species Gummifer

OCCURRENCE Southwestern Europe Greece Turkey Iran

DERIVATION Exudes from the stems of the Astragalus gummifer and other Astragalus genus plants     ­

PROPERTIES Dull white translucent plates or yellowish powder. Strongly hydrophilic. It swells in water. It contains bassorin pectin and starch.

USES Emulsifying agent thickener for food ice cream desserts toothpastes soachips and powders hair wave preparations adhesives leather dressing textile printing and sizing pharmaceutical emulsions cigar making.


Formulations of Flavours


The esters of amyl benzyl butyl methyl and propyl alcohols with acetic anthranilate butyric capric formic propionic and valeric acids are employed to simulate the fruit flavors. For example a peach flavor is enhanced by Aldehyde C 14 a strawberry flavor by Aldehyde C 16 and a pineapple flavor by ethyl butyrate. All the formulas of these flavors are made with these esters.

The proportion used for making essences is 2 or 3 volumes (2 or 3 cc per liter of solvent) for each completed formula.

All formulas are alphabetically listed including their ingredients. The ethyl alcohol 95% and distilled water are always listed last in each formula.

Ingredients denoted by an asterick are formulas which may be found in this book.

Let stand for several days (either 10 8 or 3 depending on the maximum flavor and odor development which can also be obtained by fermentation with the addition of sugar in double amount before the addition of alcohol and distilled water). Stir for 1 h daily.

Yield Proportionate to the amount of fruits and doubled ethyl alcohol 95% and distilled water.

Almond Bitter

A variety of the common almond (Prunus amygdalus amara) having bitter kernels that yield a highly poisonous oil. It is used for flavoring only when the prussic acid in it has been totally removed.

Pulverize # 1 13. Macerate with sugar and alcohol (#11 14) for 10 days stirring every day for 1 h. Filter. To the residue add double amount of ethyl alcohol 95% and distilled water. Let stand for another 3 days stirring every day for 1 h. Filter. To the residue add double amount of ethyl alcohol 95% and distilled water. Let stand for another 3 days stirring every day for 1 h. Put altogether and distill.

Dissolve caffeine in 722 g boiling water. Add 28 g citric acid. Add phosphoric acid syrup. Add glacial acetic acid. Add cola tincture. Dissolve vanillin and all the essential oils. Blend all with stirring. Let stand for 48 h stirring four times every 12 h. Let stand for another 48 h without any agitation. Separate the resins at the bottom. Separate the terpenes at the surface. Separate the clear middle portion siphoning with a rubber tube. Filter all cloudy parts of the bottom with filter paper. Place the oily upper portion in a narrow small container and siphon off the clear portion. Add to the other clear portion and shake well.

Use 35 ml of this extract and 15 ml of liquid caramel to make a finished syrup. Prepare a simple syrup by mixing 3 kg of sugar 700ml of distilled water and 50 ml of this syrup to make a gallon of imitation cola syrup. Concentration 50 ml/gal.

For each listed product separately dry and cut in very small pieces. Roast slowly and gently stir until each reaches a brownish color. To the weight of each add 50% ethyl alcohol 95% and 50% distilled water. Let stand for 1 week stirring every day for 1 h. Filter. Reuse the residue for another three times adding 50% ethyl alcohol 95% and 50% distilled water each time. Combine the extract and filter.

Fondant Orgeat Praline

Fondant A softcreamy compound of sugar water and flavorings used as a basis for candies or icing.

Organt From the French word orge meaning barley a sweet almond flavored nonalcoholic syrup used as a cocktail ingredient or food flavoring.

Praline Generally a confection of nut kernels especially almonds roasted in boiling sugar until brown and crispy a patty of creamy brown sugar and pecan meats.

Glace Cake Mix

(Candied for fruit cakes and desserts encrusted or coated with sugar or baked with sugar or syrup until translucent).

^ Top

blog comments powered by Disqus

Post   Reviews

Please Sign In to post reviews and comments about this product.


Hide Down

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. Its various services are: Pre-feasibility study, New Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Preparation of Project Profiles and Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects and industry.

NPCS also publishes varies technology books, directory, databases, detailed project reports, market survey reports on various industries and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by Indian and overseas professionals including project engineers, information services bureau, consultants and consultancy firms as one of the input in their research.

^ Top

Products & Services


Contact Us

My Account


Payment Options

  • Credit Cards
  • Debit Cards
  • PayPal
  • Net Banking - (All Major Indian Banks)

We Process

  • Cards

Google Search

Search books