Modern Technology of Plastic & Polymer Processing Industries

Author: NIIR Board
Format: Paperback
ISBN: 8178330776
Code: NI83
Pages: 429
Price: Rs. 750.00 US$ 100.00
Publisher: Asia Pacific Business Press Inc.
Usually ships within 5 days

The Indian plastic and polymer industry has taken great strides. In the last few decades, the industry has grown to the status of a leading sector in the country with a sizable base. The material is gaining notable importance in different spheres of activity and the per capita consumption is increasing at a fast pace. Continuous advancements and developments in polymer technology, processing machineries, expertise and cost effective manufacturing is fast replacing the typical materials in different segments with plastics. Plastics play a very important role in our daily lives. Throughout the world the demand for plastic, particularly plastic packaging, continues to rapidly grow. Polymer processing industry deals with the manufacture and production of polymer and synthetic substances for example acrylic plastics: poly (methyl methacrylate), poly vinyl chloride (PVC), polyamides, polyesters, cellulose plastics etc. Plastic is incredibly versatile and can be made from different ingredients, moulded into any shape, and put to a huge range of uses across industry and the rest of society. Polymer Energy system is an award winning, innovative, proprietary process to convert waste plastics into renewable energy. Polymers are the most rapidly growing sector of the materials industry. No wonder polymers are found in everything from compact discs to high tech aerospace applications. On the basis of value added, Indian share of plastic products industry is about 0.5% of national GDP. This book majorly deals with properties and applications of engineering, the strength of thermoplastic composites, and the application of thermoplastic structural composites, applications of differential scanning, calorimetry and polymer characterization, polymer degradation and stabilization, advances in photo degradation and stabilization of polyurethanes and so on. This book also consists of raw material suppliers for plastic and plastic products, manufacturers of plastic processing machinery, plastics processing machinery and equipment (foreign), machinery and equipment for plastic converting, extruders and extrusion lines, injection moulding machines and so on. This book offers, in standardized and readily accessible information on the synthesis, structure, properties and applications of the most important polymeric materials. It has been designed as a text giving a balanced coverage of the science and technology of polymers finding major applications plastics. This book is very useful for industrialists, consultants, research scholars and institutes.
1. PROPERTIES AND APPLICATIONS OF ENGINEERING THERMOPLASTICS
 Polyethylene Terephthalate (PET)
 Applications
 Polybutylene Terephthalate (PBT)
 Characteristics
 Applications
 Polyamides (PA)
 Characteristics
 Applications
 Polyoxymethylenes (POM)
 Characteristics
 Applications
 Polycarbonate (PC)
 Characteristics
 Applications

2. THE STRENGTH OF THERMOPLASTIC COMPOSITES
 Compression strength
 The Tensile Strengths of Uniaxial Laminates
 The Tensile Strengths of Cross-plied Laminates
 Shear Strengths
 Technological Tests

3. TEMPERATURE SENSITIVITY
 The Effect of Temperature on Stiffness
 The Influence of Temperature on Strength
 Toughness and Temperature
 Fire Resistance

4. THE APPLICATIONS OF THERMOPLASTIC STRUCTURAL COMPOSITES
 Medical uses
 Satellites and Launch Vehicles
 Aircraft Structures
 Marine applications
 Automotive Engineering
 Industrial Machinery

5. THERMAL ANALYSIS OF POLYMERIC MATERIALS
 Dielectric Analyzer
 Thermogravimetric Analysis (TGA)
 Thermograms
 High Resolution Thermogravimetric Analysis
 Applications
 Relative Thermal Stability
 Differential Scanning Calorimetry (DSC)

6. APPLICATIONS OF DIFFERENTIAL SCANNING CALORIMETRY AND POLYMER CHARACTERIZATION
 Specific Heat Capacity Measurement
 Calculations
 DSC Curing Kinetics
 Principle of Operation
 Applications
 DSC Thermal Stability Kinetics
Applications
Degree of Crystallinity and Melting Point (Tm)
Statement of the Problem

7. KINETIC STUDIES WITH DIFFERENTIAL SCANNING CALORIMETER

Borchardt and Daniels Method
The Technique Assumes
ASTM E698 Method
Isothermal Method
Dynamic Versus Isothermal Method
Autocatalyzed versus Nth Order Kinetics
Theory and Calculations
Isothermal Method

8. THERMOGRAVIMETRY
Quality control and materials characterisation in the ceramics industry
Use of TGA to distinguish flame-retarded polymers from standard polymers
Measurement of Smoke Density by TGA/Photometric Analysis
TGA decomposition Kinetics
Applications

9. MOLECULAR WEIGHT AND DIMENSION OF POLYMERS
Concept of Average Molecular Weight
Molecular Weight Distribution
Measurement of Molecular Weight Average
Summary

10. POLYMER DEGRADATION AND STABILISATION
Types of Degradation
Other Types of Degradation
Recent Progress in the Degradation of Polyisobutylene
Introduction
Photodegradation
Oxidative Degradation
Stabilization
Sensitization
Advances in Photodegradation and Stabilization of Polyurethanes
Introduction
Mechanism of Photodegradation
Effect of Physical State on Photodegradation
Photostabilization of Polyurethanes
Conclusion
New Developments in the Degradation, Stabilization, and Sensitization of Poly (Methyl Methacrylate)
Introduction
Weathering
Plasma Degradation
Mechanical Degradation
Ultrasonic Degradation
Electrochemical Degradation
Radiative Degradation
Thermal Degradation
Photodegradation
Oxidative Degradation
Stabilization
11. CONDENSATION POLYMERIZATION OR STEP-GROWTH POLYMERIZATION

Functionality Principal
Types of Polymerization
Basic Characteristics of Condensation or Step-Growth
Polymerization
Formation of a Polyester
Relationship between Average functionality, Extent of
Reaction and Degree of Polymerization
Molecular Weight Control: Quantitative Effect of Stoichiometric Imbalance on Maximum Attainable Molecular Weight
Kinetics of Step-growth Polymerization
Principle of Equal Reactivity of Functional Groups
Rate of Step-growth Polymerization
Distribution of Molecular Weight in (Linear Bifunctional
Polycondensation
Derivation of Distribution Functions
Weight Average Degree of Polymerization
Multichain Step-Growth Polymers (Polyfunctional Systems)
Branching
Cross-linking
Prediction of Gel-Point
Some Additional Considerations of Non-Stoichiometric
Reactant Systems
Practical Consideration of Gel Points
Molecular Weight Distribution in Multifunctional
Reactant Systems
Interfacial Polymerization

12. COPOLYMERIZATION AND TECHNIQUES OF
POLYMERIZATION

Concept of Copolymerization
Binary Copolymerization of Vinyl Monomers by Free Radical Mechanism
Analysis of the System and the Reactions Involved
Kinetics of Chain Propagation in Binary Copolymerization and Copolymer Composition
Significance of Monomer Reactivity Ratios
Types of Copolymerization
Ideal Copolymerization
Alternating Copolymerization
Azeotropic Copolymerization
Average Copolymer Composition
Determination of Monomer Reactivity Ratios
Rate of Copolymerization
Structure and Reactivity of Monomers and Radicals
Structure and Reactivity of Monomers
Resonance Stabilization
Radical Reactivity and Steric Effects
Polar Effects and Alternation
Technical Significance of Copolymerization
Block and Graft Copolymers
Techniques of Polymerizations
Bulk Polymerization
Solution Polymerization
Suspension Polymerization
13. POLYMER CHARACTERISTICS AND POLYMER CHARACTERIZATION

The Structure of Vinyl and Related Polymers
Prevalence of Head-to-Tail Structure in Vinyl Polymers
Branching in Vinyl Polymers
Polymer Degradation
Thermal Degradation
Depolymerization
Substituent Roles
Mechanochemical Degradation
Aging or Oxidative Degradation
Photodegradation
The Concept of Average Molecular Weight
Viscosity Average Molecular Weight
General Expression for Viscosity Average Molecular Weight
Number Average Molecular Weight
Membrane Osmometry
Weight Average Molecular Weight: Light Scattering by Polymer Solutions
Dissymmetry
End-Group Analysis
Dye Partition Technique
Dye Interaction Technique
The Z Average Molecular Weight
General Requirement of Extrapolation to infinite Dilution
Polymer Fractionation and Molecular Weight Distribution
Gel Permeation Chromatography
The Molecular Size Parameter
Molecular Weight Distribution in Vinyl Polymers
Thermal Analysis
Other Methods and Techniques of Polymer Characterization

14. PLASTICS: MATERIALS AND PROCESSING TECHNOLOGY

Plastics Materials - Introduction
Polyethylene
Low Density Polyethylene (LDPE)
High Density Polyethylene (HDPE)
Structure and Properties of Polyethylenes
Uses and Applications of Polyethylenes
Chlorosulphonated Polyethylene
Linear Low Density Polyethylene (LLDPE)
Polypropylene
Synthesis of Polypropylene
Structure and Properties of Polypropylene
Copolymers of Ethylene
Polystyrene
Monomer Synthesis
Polymerization of Styrene
Structure and Properties of Polystyrene
Modification to High Impact Grades
Styrene-Acrylonitrile (SAN) Copolymers and ABS Resins
Processing, Uses and Applications of Polystyrene
Acrylic Plastics: Poly (Methyl Methacrylate)
Acrylic Fibres
Poly (Vinyl Acetate)
Polymers Derived from Poly(Vinyl Acetate)
Poly(Vinyl Chloride)
Preparation of Vinyl Chloride
Polymerization of Vinyl Chloride
Structure and Properties of PVC
Compounding and Processing of PVC
Applications of PVC
Copolymers of Vinyl Chloride
Polytetrafluoroethylene (PTFE)
Coumarone-Indene Resins
Polyacetals and Polyethers (Acetal Resins)
Polyamides
Preparation of Poly (Hexamethylene Adipamide): Nylon 66
Preparation of Nylon 6
Preparation of Nylon 11 and Nylon 12
Properties, Uses and Applications of the Nylon Polyamides
Liquid Crystalline Polymers
Aromatic Polyamides
Polyimides
Polycarbonates
Epoxy resins
Cellulose plastics
Cellulose Nitrate
Cellulose Acetate
Cellulose Ethers
Regenerated Cellulose
Phenolic Resins
Chemistry of Resin Formation
Commercial Production
Phenolic Moulding Powders
Phenolic Laminates
Cast Phenolics
Miscellaneous Applications of Phenolic Resins
Amino Resins
Urea-Formaldehyde Resins
Melamine-Formaldehyde Resins
Silicones
Additives for Plastics
Fillers
Plasticizers
Stabilizers
Colouring Matters
Lubricants and Flow Promoters
Cross-linking Agents
About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs are often faced with the dilemma of zeroing in on a suitable product/line.