Handbook on Printing Technology (Offset, Flexo, Gravure, Screen, Digital, 3D Printing) 3rd Revised Edition

Author: NIIR Board of Consultants & Engineers
Format: Paperback
ISBN: 9788178331768
Code: NI73
Pages: 568
Price: Rs. 1,495.00 US$ 150.00
Publisher: Asia Pacific Business Press Inc.
Usually ships within 5 days

Printing is a process of producing copies of text and pictures. Modern technology is radically changing the way publications are printed, inventoried and distributed. There are a wide variety of technologies that are used to print stuff. The main industrial printing processes are: Offset Lithography, Flexography, Digital Printing (Inkjet & Xerography), Gravure, Screen Printing.

3D printing which is also referred as additive printing technology that enables manufacturers to develop objects using a digital file and variety of printing materials. Global market for 3D printing material include polymers, metals and ceramics. In addition, 3D printing offers a wide array of applications in various industries, namely consumer products, industrial products, defense & aerospace, automotive, healthcare, education & research and others.

In India, the market for printing technology is at its nascent stage; however offers huge growth opportunities in the coming years. Digital printing is now taking much more share, particularly in graphics (i.e. non-packaging applications). Digital's share of the whole market doubles in constant value terms from 9.5% to 19.7% and 3D printing market is estimated to garner $8.6 billion in coming years.

This handbook is designed for use by everyone engaged in the printing section and students who are pursuing their career in printing technology. It provide all information on modern printing methods, techniques, testing's for printing, application of different printing and machinery used for printing.

This book will be a mile stone for its readers who are new to this sector, will also find useful for professionals, entrepreneurs, those studying and researching in this important area.
Sheet Insertion and Transfer
Inking System
Distribution System
Multiroll System
Wash-up device
Adjustment of Rollers
Different Dampening Systems
Cleaning of Dampeners
Construction of the machine
Working on the cleaning machine
Plate Cylinder
Blanket Cylinder
Impression Cylinder
Adjustment of Cylinders
Advantages of Both Principles
Delivery Mechanism
Anti-setoff Spray
Miscellaneous Operations
13. Web Offset Machines
Driving Mechanism
Printing Units
Main Parts of Printing Unit
Inking System
Delivery Unit
Folding Unit
Ancillary Operations by Delivery Unit
Terminology Related to Colour
Mixing and Matching of Colors
Sequence of Colours in Printing
15. Quality Control in Printing
Before Printing
During Printing
After Printing
16. Flexography
Flexography
Flexographic Platemaking
Photochemical Change
Rotary Principle
Rubber Plates
Substrates
Paper and Board
17. Rotogravure
18. Creative Frees Printer
Popular Product with Powerful Appeal
Topical Information Mix
Individual Brand of Success
Production-Driven Investment
As Horst Brostler Explains
Flexibility in Many Spheres
Super-Wide Rotogravure Presses in Big Demand
Brownie points of gravure
New Techniques for Handling Giant Reels
Bigger Core Diameteres Needed to Handle Higher Speeds
A Host of Optimised Details
Light Weight Guide Rollers
Process Computer Systems With Visualisation
19. Shaftless Spearheads Expansion
Economic Efficiency—the Clincher
Eightfold Increase in Sales
Confidence in KBA Technology
Commissioning to a Tight Schedule
20. Digital Printing
Introduction
Digital Printing
Important Things We Should Know About Digital Printing
Types of Digital Printing
1. Inkjet Printer
2. Laser Printer
Important Features of Laser Printer
Advantages of Digital Printing
Benefits of Digital Printing Design & Printing
1. Cheaper Printing
2. High quality
Difference between Screen Printing and Digital Printing
Screen Printing
Digital Printing
Comparison between Digital Printing and Press Printing
Digital Printing
Press Printing
21. 3D Printing
Introduction
History of 3D Printing
How Does 3D Printing Work?
Technology
3D Printing Applications
1. Medical and Dental
2. Aerospace
Complex Designs
Weight Reduction
Improved Strength and Durability
Major Savings
3. Automotive
4. Jewellery
5. Art/Design/Sculpture
6. Architecture
7. Fashion
8. Food
Benefits of 3D Printing
Advantages of 3D Printing in Manufacturing
1. 3-D Printers are Becoming More Affordable
2. Quicker Turnaround Times for Prototyping
3. Quicker Product Launches
4. Competitive Advantage
5. Reduction in Manufacturing Errors
6. Complex Geometries
7. Mass Customization
8. Less Tooling
9. Fewer Costs
10. Environmentally Friendly
Benefits of 3D Printing in Healthcare
What Materials do 3D Printers Use?
1. Plastics
 (a) Nylon (Polyamide)
 Features
 (b) PLA Filament
 Features
 (c) ABS Filament
 Features
 (d) PVA Filament
2. Powders
3. Resins
 Features
4. Other Materials
How do the Different 3D Printing Technologies Work?
1. Fused Deposition Modeling (FDM)
 How does FDM Work?
 Materials for FDM
 ABS (Acrylonitrile Butadiene Styrene)
 ABSi (Acrylonitrile Butadiene Styrene – Biocompatible)
 ABS-M30 (Acrylonitrile Butadiene Styrene)
 ABS-M30i (Acrylonitrile Butadiene Styrene – Biocompatible)
 PC (Polycarbonate)
 ABS-ESD7 (Acrylonitrile Butadiene Styrene – Static-Dissipative)
 PC-ABS (Polycarbonate ABS)
 PC-ISO (Polycarbonate ISO)
 Ultem 9085
2. Stereolithography and Digital Light Processing (SLA & DLP)
3. Selective Laser Sintering (SLS)
4. Material Jetting (PolyJet and MultiJet Modeling)
5. Binder Jetting
6. Metal Printing (Selective Laser Melting and Electron Beam Melting)
 Electron Beam Melting
 Characteristics
 Selective Laser Melting Applications
7. PolyJet Photopolymer
 Benefits of Polyjet
 Realistic Finish
 Greater Choices
 Multiple Materials and Colors
 Polyjet Materials
 1. Digital Materials
 2. Digital ABS
 3. High Temperature
 Wide Range of Applications
 4. Transparent
 3D Print Clear and Tinted Prototypes
3D Printing With Transparent Material
3D Print Translucent Shades and Patterns
Wide Range of Applications
5. Rigid Opaque
6. Polypropylene-like
3D Print Tough, Flexible Models
7. Bio-compatible
3D Print Medical Devices
3D Printing With Bio-compatible Material
8. Rubber-like
3D Print Flexible, Soft-touch Models
3D Printing With Rubber-like Material
8. Syringe Extrusion
9. Other Methods
3D Printing is a Game Changer
22. 3D Printing Machinery
Airwolf AW3D HD
SLA 3D Printing Machine
3D Printing Machine
Makerbot Replicator
Dual Head 3D Printer
Prototyping Machine
Flashforge Finder
3D Systems Cube
3D Jet
Formlabs
23. Photographs of Machinery with Supplier’s Contact Details
Single Color Offset Printing Machine
Two Color Satellite Offset Printing Machine
Offset Printing with Numbering and Perforating Machine
Web Offset Printing Machine
Color Screen Printer
Flatbed Screen Printer
Automatic Sheetfed Offset Printing Machine
Sheetfed Offset Machine
Mini Offset Printing Machine
Flexographic Printing Machine
Label Master Flexographic Printing Press
Poly Offset Printing Machines
Prepress Equipments
Flip Top Printing Down Frame Single/Double Sided Machine
Instant Start Metal Halide Plate Exposure
Plate Coating Whirler
Plate Curing Equipment
Damper Roller Washer
Vertical Process Camera
3M Plate Processor
Computer-to-Screen Exposure System
IGP Plate Processor
Screen CTP System
Inkjet CTP System (Computer to Plate Machine)
About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.