Paints and their allied products like varnishes, enamels, pigments, printing inks and synthetic resins protect assets from corrosion. These are increasingly being used in automotive, engineering and consumer durable sectors. Paint testing can be done in a number of different ways. The fact of the matter is that many industries use several different paint testing methods in order to ensure accurate results. Paint should be tested in a wet form for particular properties but also in the dry form. Testing of paints generally falls into three categories: testing of the raw materials, testing of the finished product and performance testing using accelerated weathering and other simulation type methods of evaluation. Coatings technologists deal with interfaces of all classes gas liquid as in an aerosol spray liquid liquid, as in an emulsion gas solid, as in a dry pigment before its immersion in a vehicle liquid solid, as in a pigment dispersion and solid solid, as when the crystal faces of two different pigment particles are in tight contact. Paint scientists are particularly interested in the formation of liquid solid interfaces that are stable in the package, that is, in the permanent replacement of the air at the air solid interface of the pigment by the vehicle to give the liquid solid interface of the dispersion. In coatings and similar products, the criteria for best performance particulate ingredients; inorganic, organic, extender and metallic flake pigments and dispersed phase of latexes depends on the size and shape of particles composing the particulate materials. The purpose of paint testing is to help and ensure that the minimum requirements for ingredients and material characterization are met by the manufacturer on a batch basis, and to help ensure that the formulated product will provide satisfactory performance in the environment.

Handbook on Paint Testing Methods explains about aspect of gloss, specular glass, sheen, contrast gloss, absence of bloom gloss, distinctness of image gloss, specular gloss evaluation, specular reflectance, geometric considerations, instrumentation, goniophotometers, specular glossmeters, basic factors producing hiding power, refractive indexes of white pigments, refractive indexes of organic pigments, films for testing preparation of films for test, pigments and extenders, metallic flake pigments, latexes, methods for determining particle, treatment of data, particle size with light microscope etc.

This handbook elaborates the different testing methods of paints with an understanding of the various tests that can be performed on product performance. This handbook will be very helpful to its readers who are related to this field and will also find useful for upcoming entrepreneurs, existing industries, technical institution, etc.
Contents

1. OPTICAL PROPERTIES COLOUR AND LIGHT
 Introduction, Light source, Standard Illuminants, Color Temperature, Color Matching Booth, Metamerism,
 Non-visible Radiation, The observer, Color Deficiency, Reflectance and Transmittance, Color mixing, Addition
 of Lights, Subtractive colorimetry, Color order systems, Munsell system, Ostwald color system, ISCC-NBS System,
 Din – color system, Atlas de los colores, Federal color standard, Specialized color order systems,
 Gardner Liquid color standards, Loviiond Tintometer, Parlin color standards, Gardner – Delta color
 comparator, ASTM color Scale, ASTM Method D 1500, Intermental color measurement, Spectrophotometers,
 Abridged Spectrophotometers, Tristimulus colorimeters

2. GLOSS
 Aspect of gloss, Specular Glass, Sheen, Contrast Gloss, Absence of Bloom Gloss, Distinctness – of- Image
 Gloss, Specular Gloss Evaluation, Specular Reflectance, Geometric Considerations, Instrumen-tation,
 Goniophotometers, Specular Glossmeters, Distinctness – of – Image Glossmeters, Specular Gloss Methods,
 Two–Parameter Methods, Distinctness – of Image – Methods, Gloss standards, Material for standards,
 Calibration of standards, Use of standards

3. HIDING POWER
 Definition of Hiding Power, Basic Factors Producing Hiding Power, Reflective Indexes of White Pigments,
 Reflective Indexes of Organic Pigments, Practical Determination of Hiding Power, Checkerboard Brush-Out
 Method, Haslam Method, Early Hiding-Power Methods, Krebs Method, ASTM Relative Hiding Power, Pfund
 Cryptometer, Black and White Cryptomet, Rotary Cryptometer, Pfund Precision Cryptometer, Assessment
 of Cryptometers, Hallett Hidimeter, Hanstock Method, Bruce Hiding-Power Tests, Gordon-Gildon Method, Some
 Hiding-Power Findings-I, Pigment Concentration Versas Hiding Power, Contrast Design and Visual
 Sensitivity, Fell Equation, Hiding Power of Colored Pigments, Kubelka-Munk Two-Constant Theory,
 Importance and Applicability of Kubelka-Munk Theory, Equation, Judd Groph, Schmutz-Gallagher Method,
 New York Club Method, Van Eyken-Anderson Method, Federal Test for Dry Opacity, ASTM Method, First
 Method-Uses Cardboard, Procedure, Computation, Precision, DIN Method, Universally Applicable
 Technique, Bruelmann-Ross Method, Day Method, Some Hiding-Power Findings-II, Hiding Power
 VersusConcenlration for Titan come Pigments, Hiding Power Versus Concentration for Zinc Sulfide Pigments,
 Reflectance and Hiding Power of Tinted Paints-I, Reflectance and Hiding Power of Tinted Paints-II, Some
 Applications of Kubelka-Munk S. and K. Values, Unification of Paint Phenomeno-I, Unification of Paint
 Phenomena-II, Influence of Particle Size of Extender on S-Value, Influence of Particle Size of Titanium
 Pigment on S-Value Versus PVC, Formulation of Paints from Predetermined S-Values, Instrumental Color
 Matching Using Both S- and K. Values, Relation Between Tinting Strength and Hiding Power, Hallett Equation,
 Scattering Coefficient and Tinting Strength, Calculation of While Hiding Power from Tinting Strength

4. MASS COLOR AND TINTING STRENGTH
 Definition, Mass color, Tinting Strength, Back Factors Producing MC and TS, Mixing Pigment and Vehicle,
 Spatula and Muller Methods, Hoover Automatic Muller, Laboratory Ruller Mill, Pall Glass Mill, Pigment
 concentration, Application, Dispersion Time, Visual Mass – color Methods, ASTM Method, Other Methods,
 Mass color of white pigments, Visual Tinting –strength Methods, ASTM Method for colored pigments, NPIRI
 Method for colored pigments, TAPPI Method of Colored Pigments, Tintograph, ASTM Method for White
 Pigments, NPIRI Method for White Pigments, NJZ Method for Zine Oxide and Titanium Dioxide, duPont
 Method for Titanium Di-oxide, Reynolds Constant Volume Method, Instrumental Mass Color, Maxwell Color
 Instrumental Timing-Strength Methods, Early Methods, DIN Method, Japanese Method, Mttnk Theory, ASTM
 Method for White Pigments, Some Tinting-Strength Findings, Pigment Concentration, Lightness Versus PVC,
 Tone Versus PVC, Tone of Colored Pigments, Calculation of Instrumental Color Matches, History, Simple
 Case—One Constant, General Case—One Constant, More Than Three Wavelengths, General Case—Two
 Constants, Pigment Standards for Federal Specifications, Artist’s Oil Paints Commercial Standard CS98-42,
 Permanent Palettes

5. PHYSICAL PROPERTICS
 Density, Specific Gravity, Density of Liquids with Pycnometer, Procedure, Weight Per Gallon, Specific

6. VISCOSITY AND CONSISTENCY

7. SURFACE ENERGETICS

Free Interfacial Energy, Wetting, Surface Tension, Surface Tension Measurements, Capillary Rise Method, Maximum Bubble Pressure Method, Drop-Weight Method, Ring Method, Other Methods, Contact Angle, Shadow Method, Titling Plate Method, Displacement Cell Method

8. PARTICLE SIZE MEASUREMENT

Pigments and Extenders, Metallic Flake pigments, Latexes, Methods for Determining Particle, Treatment of Data, Particle Size with Light Microscope, Direct Measurement Method, Reticle Method, Dark Field Technique, Particle Size with Electron Microscope, Particle Size by Sieving, Hand Sieving, Machine Sieving, Particle size by Sedimentation, Gravity Sedimentation, Centrifugal Sedimentation, M-S-A Particle Size Analyzer, Sedimentation by Ultracentrifuge, Particle Size by Photometry, Transmission Methods, Spectrophotometric Techniques, Angular-Dependence Techniques, X-ray Scattering, Particle Size by Elutriation, Thompson Classifier, Roller Particle Size Analyzer, Felvartion, Particle Size from Surface Area, Adsorption of Gas, Adsorption of Solutes, Soap Titration Method, Permeation Method, Electronic Size Analyzer, Particle Size and Thickness of Metallic Flake Pigments, Coarse Particles, Sieve Method, Gallie-Parratt Apparatus, Dunn Test, Thin-Film Drawdown for Oversize Particles, Dunn Texture Test for Dry Pigments, North Standards, Fineness-of-Dispersion Gages, X-ray Microradiography Technique

9. OIL ABSORPTION OF PIGMENTS

10. FILMS FOR TESTING PREPARATION OF FILMS FOR TEST

11. MEASUREMENT OF FILM THICKNESS
Wet Film Thickness, Inmont Wet Film Gage, Pfund Wet Film Gage, Tooth Gages, Needle Micrometer, Dry Film Thickness, Machinists’ Micrometer, Gardner Needle Thickness Gage, Gardner Carboloy Drill Thickness Gage, Gardner Gage Stand, Gardner Micro-Depth Gage, Microscope for Film Thickness, Magnetic Thickness Gages, Inductance Thickness Gage, Eddy-Current Thickness Gage, General Electric Gage, Type B, Elcometer, Minitector, Gardner Scratch Thickness Gage, Profile Measurement, Keane-Tator Surface Profile Comparator, Elcometer Surface Profile Gage

12. DRYING TIME

13. MECHANICAL PROPERTIES OF FILMS
HARDNESS AND RELATED PROPERTIES

14. ABRASION RESISTANCE

15. ADHESION

16. FLEXIBILITY
Definition, Interpretation, External Factors Affecting Flexibility, Humidity, Temperature, Strain Rate, Determination of Flexibility, Mandrels, T-Bend, Cupping Tests, Forming Tests, Impact Tests, Cold Crack, Exposures

17. TENSILE STRENGTH AND ELONGATION
Definition, Interpretation, Determination, Specimen Preparation, Tension Testing Machines, Film Mounting, Controlled Conditions Cabinets, Reproducibility, Predicting Durability

18. CHEMICAL PROPERTIES OF FILMS

19. CHEMICAL RESISTANCE

20. FIRE RETARDANCE AND HEAT RESISTANCE

About NIIR
NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs are often faced with the dilemma of zeroing in on a suitable product/line.