Water soluble polymers cover a wide range of highly varied families of products of natural or synthetic origin, and have numerous uses. A water soluble polymer is a polymer that can be diluted in water, with or without the assistance of co-solvents and neutralizing agents, to form transparent solutions. They may be classified into two types, totally synthetic polymers and natural products together with their chemically modified derivatives and further can be grouped into three main headings; naturally occurring, semi-synthetic and completely synthetic polymers. The water based polymers are quick drying, non-inflammable, having mild odour and more environmentally acceptability than any other polymers. Most conventional coating polymers at present can be produced in a form that will allow them to be solubilized in water. These include alkydes, polyesters, acrylics epoxies. There are various types of polymerization methods of water soluble polymers such as bulk polymerization, solution polymerization, copolymerization, emulsion polymerization and suspension polymerization. Water soluble polymers are used widely as stabilizers or protective colloids in emulsion polymerization. Its most common use are gum acacia, starch either etherified or in its degraded form, dextrin, polyvinyl alcohol and hydroxyethyl cellulose. Polymers find many applications in oil recovery and production, including areas such as; drilling fluids, cementation of well bore, reservoir fracturing, controlling fluid flow in the reservoir and multistage processes of oil production and refining. The water soluble polymers market encompasses several categories, including starch, cellulose ethers, polyvinylacetate, polyvinyl alcohol and other synthetic water soluble polymers. The starch market is the largest.

This book basically deals with flow characteristics of water soluble polymer solutions, emulsion polymerization, water reducible resins, silicone modified alkyds and polyesters, cross linking of water soluble coatings, formulation of water soluble coatings, trouble shooting with water soluble polymers, acrylic solution resins, polyvinylpyrrolidone, commercial uses: compounding and formulating adhesives, methods of polymerization, methods for polymerization of acrylamide, fabrication of water soluble polymers, excluded volume interactions of neutral polymers etc. The book covers classification of water soluble polymers, processes, properties, uses and applications of water soluble polymers with lot of other information. This book will be very resourceful for new entrepreneurs, existing units, technocrats, researchers and technical libraries.
Thixotropes and Thickeners
Volatile Additives
Pigments
Formulation of Water-soluble Coatings
Solubilization of Polymers
Trouble Shooting with Water-soluble Polymers
Vehicle Separation
Low Opacity
Photographing of Surface Defects
Viscosity Variations
Foaming and Air Entrapment
Sags and Runs
Poor Flow, Levelling and Orange Peel
Low Gloss and Micro Wrinkles
Flooding and Floating
Cratering and Pinholing
Picture Framing and Fat Edges
Blistering and Solvent Popping
3. ACRYLIC SOLUTION RESINS
 Terminology
 Backbone Monomers
 Synthesis
 Addition Polymerization
 Copolymerization
 Thermoplastic Acrylics
 Selection of Monomer
 Solution Polymerization
 Properties and End Uses
 Thermosetting Acrylics
 Selection of Monomer
 Classification and Properties
 Acrylamide Copolymers
 Acid Copolymers
 Hydroxy Copolymers
 Curing Reactions
 Aqueous Solution Acrytics
 Non-Aqueous Dispersions (NAD)
4. POLYVINYLPYRROLIDONE
 Introduction
 Chemical Nature
 Physical Properties
 Manufacture
 Toxicological Properties
 PVP Films
 Compatibilities
 Future Developments
 Application of PVP
 Pharmacy
 Medicine
 Beverages
 Cosmetics and Toiletries
 Textiles
 Paper
5. POLY (ETHYLENE OXIDE)

Introduction
Chemical Nature
Physical Properties
Manufacture
Biological/Toxicological Properties
Rheological Properties
Additives/Extenders
Applications
Application Procedures
Commercial Uses: Compounding and formulating Adhesives
Industrial Supplies
Constructions Products
Paints and Paint Removers
Pharmaceuticals
Printing Products
Soap, Detergents, and Personal Care Products
Water-Soluble Films
Commercial Uses: Processing Aids
Binder
Coatings and Sizes
Dispersant
Flocculation
Hydrodynamic Drag Reduction
Thermoplastics Manufactures
Thickening/Rheology Control
Water Retention
Industries Using Polyethylene Oxide
Formulations
Aluminum and Metal Cleaner
Calamine Lotion
Denture Flexative Powder
Detergent Bars
Detergent Liquid
Lithographic Press Dampening Fluid
Micro Encapsulation
Paint and Varnish Remover
Thickened Acetic Acid
Thickened Hydrochloric Acid (Muriatic Acid)
Thickened Sulfuric Acid
Rubber Lubricant (For Mounting of Tires)
Toothpastes

6. METHODS OF POLYMERIZATION

Acrylamide
Initiation Methods
Single Component Initiators
Redox Initiators
Mechanism of Initiation
Dependence of Polymerization on Temperature
Propagation and Termination
Effect of pH
Effect of Monomer Concentration
Effect of Polymerization Medium
Inorganic Salts
Effect of Surfactants
Nature of the Termination Process
Substituted Acrylamides
Heat of Polymerization
Methods for Polymerization of Acrylamide
Acrylic and Methacrylic Acids
Effect of pH
Effect of Polymerization Medium
N-vinyl Pyrrolidone (NVP)
Other Water Soluble Polymers
Vinyl Alkyl Ethers
Ethylene Oxide (Cyclic Ether)
Ethylene Imine
Conclusions

7. CHEMICAL MODIFICATIONS
Cross-Linking with Functional Groups
Cross-Linking by Hydrogen Bonding
Effects of Cross-Linking on the Physical Properties of Polymers
Principal Types of Water-soluble Polymers
Determination of Cross-linking Density
Chemical Reactions of Water Soluble Polymers
Reactions of Cellulose and Starch
Structure and Cross-Linking Reactions of Proteins
Cross-Linking Reactions Involving Metal Ions

8. FABRICATION OF WATER SOLUBLE POLYMERS
Extrusion
Molding
Calendering
Thermoforming
Bonding
Foams
Plastisol Processing

9. COMPOUNDING OF WATER SOLUBLE POLYMERS
Compound Ingredients
Plasticized Poly(vinyl Chloride)
Plastisols
Techniques

10. POLYMERIZATION OF WATER SOLUBLE POLYMERS
Bulk Polymerization
Effect of Oxygen
Solution Polymerization
Chain Transfer and Molecular-Weight Control
Copolymerization
Industrial Manufacture
Emulsion Polymerization
Suspension Polymerization
Solution and Bulk Polymerization
11. PROPERTIES OF WATER SOLUBLE POLYMERS

Structure
Property Values
Testing
Specifications
Degradation and Stabilization

12. SOLUTION THERMODYNAMICS OF NON-IONIC WATER SOLUBLE POLYMERS

Experimental Techniques
Theory
Comparison with Aqueous Solutions
Possible Reasons for the Deviations
The Hydrophobic Interaction
Evidence for Hydrophobic Interaction for Polyoxyethylene Solutions
Aggregation
Conformation

13. FRACTIONATION AND CHARACTERIZATION

Molar Mass and Its Distribution
Preparative Fractionation
Molar Mass Measurement
Reference Methods
Solution Viscosity
Analytical Size-exclusion Chromatography
Characterization of Polyacrylamide

14. WATER SOLUBILITY AND SENSIVITY

Scope and Classification
Thermodynamic Formalism
Experimental Data
Hydrophobic Effects
Concentrated Solutions
Non-Equilibrium Behaviour: Bound and Unfreezable Water
Time Dependent Properties
Conclusions

15. AQUEOUS SOLUTIONS OF POLYELECTROLYTES

The Phenomenological Approach
The Theoretical Approach

16. POLYMER SMALL MOLECULE INTERACTIONS

Interaction of Polymers with Water
(i) Hydrophobic Interactions
(ii) Hydrophilic Interactions
Interaction with Ions
Interaction with Surfactants

17. EXCLUDED VOLUME INTERACTIONS OF NEUTRAL POLYMERS

General Thermodynamic Relationships
Expression of Chemical Potentials in Terms of Composition
Binary (One-Solute) and Ternary (Two-Solute) Systems
Consequences of Non-Ideality
Excluded-Volume Interaction of Polymers
Approximate Expression of Available Volume
Effect of Concentration on the Configuration of Chain-Polymers
Some Experimental Examples

18. POLYMER ADSORPTION

Theoretical Predictions
Experimental Methods
(a) Macroscopic Interfaces
(b) Particulate Dispersions
Experimental Results
19. POLYVINYL ALCOHOL
General
Film Solubility and Swelling in Water
Solubility in Organic Solvents
Properties of Polyvinyl Alcohol Films
Gelling and Precipitation of Polyvinyl Alcohol
Conclusion
20. ROLE OF POLYMERS IN THE STABILIZATION OF DISPERSE SYSTEMS
The Attractive Interaction
General Methods for Imparting Colloid Stability
Steric Stabilization
The Phenomenology of Flocculation
Identification of the Critical Flocculation Point
Notes on the Theta-point
Classification of Sterically Stabilized Dispersions
The Unimportance of Dispersion Forces in Incipient Flocculation
Qualitative Discussion of the Origins of Steric Stabilization
Non-Aqueous (and some aqueous) Dispersions
Aqueous Dispersions
Quantitative Calculation of Repulsive Potential Energy
Enhanced Steric Stabilization
Elastic Steric Stabilization in Polymer Melts
Heterosteric Stabilization
Depletion Stabilization
Schematic Representation of the Effects of Idealized High Molecular Weight Polymer
21. WATER SOLUBLE POLYMERS AS STABILIZERS
Adsorption Behaviour of Water-Soluble Polymers
a. Adsorption on â€œModelâ€ Polymer Dispersions
b. Adsorption on Inorganic Dispersions
c. Effect of Low Molecular Weight Surfactants on Adsorption
Interactions of Water-Soluble Polymers with Surfactants
Effects of Water-Soluble Polymers Added to Dispersions
Water-Soluble Polymers as Stabilizers in Dispersion Polymerization
a. Technological Aspects
b. The Function of WSPs in Polymerizing Dispersions
22. POLYMERIC FLOCCULANTS
Nature of Polymeric Flocculants
Bridging Flocculation
Adsorption Mechanisms
Flocculation by Bridging
Kinetic Aspects of Bridging Flocculation
Charge Neutralization
23. THERMOREVERSIBLE GELATION
Conclusion
24. WATER SENSITIVE GELS
Structure of Synthetic Hydrogels
Preparation
Swelling of Gels
Surface Properties
25. RHEOLOGICAL CHARACTERIZATION OF
SOLUTION AND GEL
Interpretation of Results
Concentrated Solutions
Polymer Networks
Surface and Interfacial Rheological Behaviour

26. THE INTERFACE BETWEEN AQUEOUS POLYMER SOLUTION AND ITS APPLICATION
Types of Water-Soluble Polymers
Scientific Aspects
Interaction Forces

27. POLYMERS IN OIL RECOVERY AND PRODUCTION
Operations Employing Polymers
Drilling Fluids
Cementing Fluids
Fracturing Fluids
Mobility Control for Water Flood Recovery
Polymers Employed in Reservoir Preparation and Oil Recovery
Cellulose Derivatives
Naturally Occurring Gums and their Derivatives
Starch and Its Derivatives
Acrylamide Polymers
Oil Production Polymers
Scale Formation
Corrosion Inhibitors
Demulsifiers

28. MEDICAL AND PHARMACEUTICAL APPLICATIONS
Polymers Used Therapeutically/Prophylactically
Biomedical/Prosthetic Uses
Pharmaceutical Applications
Processing and Formulation Aids; Disintegrants
Tablet Coating
Microencapsulation
Sustained Drug Delivery
Degradation
Disintegration and Dissolution of Polymers
Diffusion
Drug Complexing Agents
Stabilization of Dispersions/Controlled Flocculation
Conclusion

29. APPLICATIONS OF POLYMER EMULSIONS FOR WATER-BASED PAINTS
Historical Changes in Demand
Selection of Raw Materials
Monomers
Range of Products
Resin Emulsions: Thermoplastic Type
Polyvinyl Acetate Emulsions
Vinyl Acetate - Acrylic Copolymers
Styrene Acrylic Copolymer Emulsions
Vinyl Acetate - Veova Copolymers
Acrylic Emulsions
Film Forming Mechanism

30. AQUEOUS POLYURETHANE DISPERSION TECHNOLOGY—AN UPDATE
Introduction
Concept of Aqueous Pud
(1) Definition
(2) Dispersion Behaviour
(3) Film Formation
Chemical Classification
(1) Anionic
(2) Cationic
(3) Nonionic
Preparation Procedures
(1) Acetone Process
(2) Prepolymer Mixing Process
(3) Hot-Melt Process
(4) Ketamine/Ketazine Process
(5) Self-Dispersing of Solids
Chemical Crosslinking
(1) Blocked Isocyanates
(2) Radiation Induced Crosslinking
(3) Crosslinking with Melamine/Formaldehyde Resin
(4) Aziridines
(5) Zirconium Compounds
Factors Influencing Performance
(1) Type of Polyols
(2) Type of Isocyanates
(3) NCO/OH Ratio
(4) Effect of Pendant Functionality
(5) Effect of Catalysts
(6) Particle Size
(7) Glass Transition Temperature (Tg)
(8) Molecular Weight
(9) Intermolecular Forces
(10) Crosslinking Density
Recent Advances
(1) Improvement in Storage Stability
(2) Improvement in Water and Chemical Resistance
(3) Improvement in Mechanical Properties
(4) Improvement in Other Important Properties
Combination of PUD with acrylics
Characterisation of Aqueous PUDs
(1) Abrasion Resistance
(2) Solvent Resistance
(3) Thermal Analysis
(4) Fourier Transform - Infra Red Spectroscopy (FT-IR)
Applications
The Future
Acknowledgment
31. MAINTENANCE COATINGS BASED ON WATERBORNE DISPERSIONS
Introduction
Formulating Principles
Pigments
Additives
Binders
Acrylics/Vinyls/Vinyl-Acrylic Emulsions
About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs are often faced with the dilemma of zeroing in on a suitable product/line.