Adhesives were utilized in a sophisticated manner even in ancient times. Recent years have seen the rapid development of adhesive bonding as an economic and effective method for the fabrication of components and assemblies. The great many types of adhesives are currently in use and there is no adequate single system of classification for all products. The adhesives industry has generally employed classifications based on end use, such as metal to metal adhesives, wood adhesives, general purpose adhesives, paper and packaging adhesives etc. An adhesive or formulation is generally a mixture of several materials. The extent of mixture and the ratio usually depend upon the properties desired in the final bonded joint. The basic materials may be defined as those substances, which provide the necessary adhesive and binding properties. The type of adhesive material is easier to define and usually falls into three categories; thermosetting resins, thermoplastic resins and elastomeric resins. A thermosetting system, 100 percent reactive when in a pure state, the epoxies are very desirable and more widely used than any other chemical type. Epoxy is one of the newer types and has penetrated more fields of manufacturing operations in a shorter space of time than any of its predecessors. The many catalysts used with epoxies produce systems of variable properties. The most common are the aromatic amines and cyclic anhydrides. The phenolics or phenol formaldehyde resins are formed by the condensation reaction of phenol and formaldehyde. The phenolic resins have been used extensively in the lamination of plywood and in filament wound structures. There are two basic classes of phenolic resins resoles and novalacs, and both begin as phenol alcohols. When combined or alloyed with other adhesive systems, they become excellent structural adhesives and are widely used in this manner throughout the aerospace industry. The vinyl polymers do not stand alone as a structural adhesive, but hundreds of adhesives are formulated by the use of this class of polymer. The vinyls are important to adhesive bonding not only from the adhesive standpoint, but because the films derived from these substances are widely used as vacuum bags, slip sheets, etc. The more widely used ones are polyvinyl chloride, polyvinyl alcohol, and polyvinyl fluoride. There are numerous kinds of adhesives used in different industries; polyvinyl acetate wood adhesives, aminoresin wood adhesives, phenolic resin wood adhesives, cyanoacrylate adhesives, hot melt adhesives, water based adhesives etc. The market for adhesives is comprised of thousands of end uses. The realm of market applications expands as new end uses keep developing, driven by the need for new and innovative attachment solutions. When looking at the total market, adhesives account for about 75% of the volume consumed.

This book basically deals with adhesive properties and general characteristics, adhesive materials and properties, adhesives types, thermoplastic adhesives, thermosetting adhesives, rubber resin blends, properties of basic adhesives types, acrylics acrylic acid diesters, allyl diglycol, carbonate, animal glues, blood albumen, butadiene styrene rubbers, butyl rubber and polysobutylene casein, cellulose derivatives, cellulose acetate, acetate butyrate cellulose, caprate cellulose, nitrate (nitrocellulose or pyroxylin), ethyl cellulose, hydroxy ethyl cellulose, methyl cellulose and sodium carboxy methyl cellulose, ceramic or
refractory inorganic adhesives
cyanoacrylates, epoxy adhesives, epoxy nylon, epoxy polyamide, epoxy polysulphide, epoxy polyurethane,
fish glue, furanes etc.
The present book covers the manufacturing processes of different industrial adhesives with their formulae. It
is hoped that the book can serve to new entrepreneurs, technocrats and existing units to the technology of
adhesive and guide them to a useful understanding of the wide variety of adhesives which exist today.

Contents

1. ADHESIVE PROPERTIES AND GENERAL CHARACTERISTICS
 Epoxies
 Phenolic Adhesives
 Nitrile Adhesives
 Vinyl Adhesives
 Neoprene
 Polyurethanes
 Silicones
 Polyesters
 Acrylics
 Rosin (Sometimes Called Colophony)
 Polysulfide Rubber Adhesives
 Ceramic Adhesives
 Cyanoacrylate Adhesives
 Polyaromatic Adhesives
 Vinyl Phenolic Adhesives
 Neoprene Phenolic Adhesives
 Epoxy-Silicone Adhesives
 Epoxy-Polysulfide Adhesives
 Epoxy-Nylon Adhesives
 Epoxy-Phenolic Adhesives
 Nitrile-Phenolic Adhesives
 Modified Epoxy Intermediate Curing Films

2. ADHESIVE MATERIALS AND PROPERTIES
 The Components of An Adhesive
 Adhesives Types
 Thermoplastic Adhesives
 Thermosetting Adhesives
 Rubber-Resin Blends
 Properties of Basic Adhesives Types
 Acrylics
 Acrylic Acid Diesters
 Allyl Diglycol Carbonate
 Animal Glues
 Blood Albumen
 Butadiene-styrene Rubbers
 Butyl Rubber and Polyisobutylene
 Casein
 Cellulose Derivatives
 Cellulose Acetate
 Cellulose Acetate-butyrate
 Cellulose Caprate
Cellulose Nitrate (Nitrocellulose or Pyroxylin)
Ethyl Cellulose
Hydroxy Ethyl Cellulose
Methyl Cellulose and Sodium Carboxy Methyl Cellulose
Ceramic or Refractory Inorganic Adhesives
Cyanoacrylates
Epoxy Adhesives
Epoxy-Nylon
Epoxy-Polyamide
Epoxy-Polysulphide
Epoxy-Polyurethane
Fish Glue
Furanes
Hot-Melt Adhesives
Inorganic Adhesives and Cements
Sodium Silicate
Phosphate Cements
Basic Salts (Sorel Cements)
Litharge Cements
Sulphur Cements
Hydraulic Cements
Inorganic Polymers
Ionomer Resins
Isocyanates
Isocyanate Adhesives
Isocyanateâ€“Modified Adhesives
Isocyanateâ€“Polyester Methane Adhesives
Melamine Formaldehyde
Natural Rubber
Nitrile Rubbers
Permanence
Nylon Adhesives
Solution Adhesives
Hot-melts
Phenolic-nylon
Phenolic-epoxy
Phenol Formaldehyde (Acid Catalysed)
Phenolic Formaldehyde (Hot Setting)
Phenolic-Neoprene
Phenolic-Nitrile
Phenolic-Polyamide
Phenolic-Vinyl Butyral
Phenolic-Vinyl Formal
Phenoxy
Polyamides
Polyaromatics
Polyimides (PI)
Polybenzimidazoles (PBI)
Polybenzothiazoles (PBT)
Polyphenylenes (PP)
Polychloroprene (Neoprene) Rubbers
Polysters
Allyls
Alkyds (or Glyptals)
Polyesters (Unsaturated)
Polystyrene
Polysulphide (Thiokol)
Polyurethanes
Polyvinyl Acetals
Polyvinyl Acetate
Polyvinyl Alkyl Ethers
Polyvinyl Alcohol
Polyvinyl Chloride
Reclaim Rubber
Resorcinol Formaldehyde and Phenol
Resorcinol Formaldehyde
Rubber Derivatives
Chlorinated Rubber
Cyclised Rubber
Rubber Hydrochloride
Silicones
Silicone Rubber
Epoxy-silicone
Soy(a)bean and Vegetable Proteins
Starch
Thermoplastic Resins (Miscellaneous)
Coumarone-indene
Shellac
Rosin (Colophony)
Oleo-Resins (Vegetable Oils + Rosin, Phenolic or Alkyd Resins)
Bitumen (Including Asphalt)
Urea Formaldehyde
Water and Solvent Based Adhesives
Waxes

3. PHYSICAL TESTING OF ADHESIVES
Introduction
Strength Properties
Assessment of Durability and Strength
Parameters
Fatigue
Creep
Flexural Strength
Peel Strength
Durability
Non-Destructive Testing
Standard Test Methods

4. POLYVINYL ACETATE WOOD ADHESIVES
Introduction
Background
Chemistry of Polyvinyl Acetate
A. Production of Vinyl Acetate Monomer
B. Polymerization of Vinyl Acetate
Formulating A Pva-Based Adhesive
A. General Considerations
B. Formulating and Compounding
C. Guide Formulations
Aspects of Application
A. Joint Design
B. Surface Preparation
C. Adhesive Preparation
D. Application
E. Assembly Conditions
F. Influence of Temperature
Performance of Pva Adhesives
A. Factors Affecting Durability
B. Specifications
C. Testing
Conclusion
5. AMINORESIN WOOD ADHESIVES
Introduction
Chemistry of Aminoresins
A. Urea-Formaldehyde Condensation
B. Melamine-Formaldehyde Condensation
C. Aniline-Formaldehyde Condensation
D. Reaction Kinetics: Urea-Formaldehyde
E. Reaction Kinetics: Melamine-Formaldehyde
F. Reaction of Methylolureas in the Presence of Cellulose
G. Reaction Mechanisms: Urea-Formaldehyde
H. Reaction Mechanisms: Melamine-Formaldehyde
I. Hardening
J. Analysis
Chemistry and Technology of Application of Aminoresin Adhesives for Wood
A. General Principles of Manufacture and Application
B. Formulaire
C. Plywood and Particleboard Adhesives
D. Melamine Laminates
E. Glulam, Finger Jointing and Joinery Adhesives
F. Toxicity
6. PHENOLIC RESIN WOOD ADHESIVE
Introduction
Chemistry of Phenol-Formaldehyde Condensations
A. Reaction Mechanisms
B. Nature of Mechanism: Methylene and Methylene-Ether Bridges
C. Acid Catalysis
D. Alkaline Catalysis
E. Metallic Ions Catalysis and Orientation of the Reaction
F. Reaction Kinetics
G. Hardening
H. Resorcinol and Meta-Aminophenol Condensates
Chemistry and Technology of Application of Phenolic Resin Adhesives for Wood
A. General Principles of Manufacture
B. Plywood and Particleboard Adhesives and the Factors Regulating Their Application
C. Properties of Phenolic Adhesives for Plywood
D. Formulation of Plywood Glue Mixes
E. Plywood Manufacturing Variables
F. Wood-Related Factors
G. General Observations on Particleboard Manufacture
H. Dry-Out Resistance
I. Wood Laminating and Finger Jointing Adhesives
J. Fast Setting Adhesives for Finger Jointing
7. TANNIN-BASED WOOD ADHESIVES
 Introduction
 Chemistry of Condensed Tannins
 A. General
 B. Monoflavonoids
 C. Biflavonoids
 D. Triflavonoids and Tetraflavonoids Condensed Tannins
 E. Methods for the Analysis of Phenolic Materials Content in Tanning Extract
 Reactivity of Tannins as Macromolecules
 A. Reactivity and Orientation of Electrophilic Substitutions of Flavonoids.
 B. A- and B-Ring Reactions with Aldehydes and Their Kinetics
 C. Metal Ions Catalysis
 D. Hydrolysis and Acid and Alkaline Autocondensation
 E. Sulfitation
 Chemistry and Technology of Industrial Tannin Adhesive Formulations
 A. General
 B. Standardization of Industrial Tanning Extracts
 C. Exterior-Grade Plywood Adhesives
 D. Cold-Setting, Fast-Setting and Radio-Frequency Laminating Adhesives
 E. Exterior-Grade Particleboard Adhesives
 F. Corrugated Cardboard Adhesives
 G. Generation of Resorcinol
 H. Infrared Analysis of Resorcinol Content in Tannin-Based Adhesives
8. URETHANE STRUCTURAL ADHESIVE SYSTEMS
 Introduction
 A. Historical
 B. Advantages and Limitations
 Chemistry
 A. Basic Concepts
 Application/Meter-Mix Equipment
 Curing, Testing and Durability
 A. Curing
 B. Testing and Durability
 Health, Safety and Environmental Considerations
 Quality Control of Urethane Adhesives
9. MODIFIED ACRYLIC STRUCTURAL ADHESIVES
 Introduction
 History
 Performance Properties
 A. Advantages
 B. Disadvantages
 C. General Performance
 Curing Properties
 Technology
 Handling Properties
 A. Accelerator Lacquer Method
 B. Two-Component Mix Method
 C. Two-Component, No-Mix Method
 Representative Case Histories

NIIR Project Consultancy Services (NPCS) 6/10
A. Solar Heating Panels
B. Ceramic Magnets
C. Shipbuilding
D. Sporting Goods
E. Aircraft

Meter, Mix, Dispense Equipment

Present Limitations and Future Directions of

10. PHENOLIC ADHESIVES AND MODIFIERS

Introduction

Chemistry of Phenolic Resins

Analytical Test Methods

Phenolic Adhesives

Phenolic Modifiers

Phenolic Modifiers as Tackifiers

Solvent-Based Contact Adhesives
A. Neoprene-Phenolic Contact Adhesives
B. Adhesive Compounding
C. Adhesive Testing and Performance
D. Solvent Blend
E. Nitrile-Phenolic Contact Adhesives

Phenolic Dispersions

Other Uses for Phenolic Tackifiers

Structural Adhesives
A. Vinyl-Phenolic Structural Adhesives
B. Nitrile-Phenolic Structural Adhesives
C. Epoxy-Phenolic Structural Adhesives

Summary

Suppliers of Trade-Name Material

11. CYANOACRYLATE ADHESIVES

Introduction

Types of Cyanoacrylate Adhesives

Mechanism of Bond Formation

Advantages

Limitations

Bonding Characteristics on Various Substrates
A. Metals
B. Plastics
C. Rubber
D. Glass
E. Wood and Porous Materials

Dispensing Cyanoacrylates

Requirements for Successful Use of Cyanoacrylate Adhesives

Commercial Applications in Product Assembly

Toxicity and Handling Precautions
A. Toxicity
B. Handling Precautions

Cleaning Up Excess Adhesive

How to Release Bonds

Shelf Life of Cyanoacrylates

12. HOT-MELT ADHESIVES

Introduction and Definition of Hot-Melt Adhesives

Advantages and Limitations of Hot-Melt Adhesives
A. Advantages
B. Limitations
Types of Hot Melts Based on the Backbone Polymer
Elementary Principles of Joint Design
Hot-Melt Adhesive Usage by Industry
Where Hot-Melt Adhesives are Used
Summary of Adhesives by Base Polymer or Use
What to do when Problems Occur while using Hot-Melt Adhesives
Safety Suggestions for using Hot-Melt Adhesives
Hot-Melt Adhesives—Forms and Shapes
Hot-Melt Adhesives—Anticipated Future Developments
Thermoplastic-Thermoset
Foamable Hot Melts
Exotic Polymers
13. PRESSURE-SENSITIVE ADHESIVES
Introduction
Theory
Surface Tack
Peel Adhesion
Shear Resistance
The Influence of Polymer Structure on Performance Properties
Market and Trends
A. Introduction
End Uses
Solvent-Based Pressure-Sensitive Adhesives
Water-Based Systems
Hot-Melt Pressure-Sensitive Adhesives
Radiation Curing
Coating Methods
Test Methods
14. WATER-BASED ADHESIVES
Introduction
Types of Water-Based Adhesives
Chemistry and Formulating of Water-Dispersed Adhesives
A. Natural-Rubber Latices
B. Synthetic-Rubber (Polymer) Latices
Postformed-Rubber (Polymer) Latices
Film Formation of Water-dispersed Adhesives
Bonding Techniques
A. Wet Bonding
B. Open-Time Bonding
C. Contact Bonding
D. Solvent Reactivation
E. Heat Reactivation
Forced Drying of Latex Adhesives
Properties of Latex Adhesives Versus Solvent-Based Adhesives
Applications for Various Types of Latex Adhesives
Characterization of Latex Adhesives
A. Physical Properties
B. Application Properties
C. Performance Properties
Adhesive Selection
15. THE BONDING PROCESS
Storage
Preparation of the Adhesive
Methods of Adhesive Application
Brushing
Flowing
Spraying
Roll Coating
Knife Coating
Silk Screening
Melting
Methods of Adhesive Bonding
Wet Bonding
Reactivation Bonding
Pressure-Sensitive Bonding
Curing
Other Methods of Bonding
Inadequate Bonding
Methods of Bond Curing
Direct Heat Curing
Radiation Curing
Electric Heaters
High Frequency (Radio Frequency) Dielectric Heating
Induction Heating
Low-Voltage Electric Heating (L.V.H.)
Ultrasonic Activation
Bonding Pressure
 Equipment for Processing Adhesives

About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs
are often faced with the dilemma of zeroing in on a suitable product/line.