The Complete Technology Book on Industrial Polymers, Additives, Colourants and Fillers

Author:- NIIR Board of Consultants &

Engineers

Format: paperback

Code: NI180 Pages: 512

Price: Rs.1100US\$ 125

Publisher: NIIR PROJECT CONSULTANCY

SERVICES

Usually ships within 5 days

The Indian plastic and polymer industry has taken great strides. In the last few decades, the industry has grown to the status of a leading sector in the country with a sizable base. The material is gaining notable importance in different spheres of activity and the per capita consumption is increasing at a fast pace. Numerous plastics and fibers are produced from synthetic polymers; containers from propylene, coating materials from PVC, packaging film from polyethylene, experimental apparatus from Teflon, stockings from nylon fiber, there are too many to mention them all. The reason why plastics are popular is that they may offer such advantages as transparency, self lubrication, light weight, flexibility, economy in fabricating and decorating. Properties of plastics can be modified through the use of fillers, reinforcing agents and chemical additives. Silicones are by far the most important industrial polymers and are based on silicon, an element abundantly available on our planet. Polymers are classified in three broad groups; addition polymers, condensation polymers and special polymers. It is well known that the major consumption of additives is in PVC compounds. Approximately 80% of additives are being used in PVC; however the left over 20% is consumed in compounding of other thermoplastics. Plastic master batches and fillers have their own importance in plastic processing industries. Colorants are the materials that give colour and opacity to plastics are chemically characterized as either pigments or dyes. Pigments are finely pulverized natural or synthetic particles which may be of inorganic or organic origin and insoluble in the matrix in which they are dispersed. Permanent red 2B is a mono azo pigment that is widely used in thermoplastics because it is inexpensive and has high tinting strength and good bleed resistance. Fillers are commonly employed in opaque PVC compounds to reduce cost and to improve electrical insulation properties, to improve deformation resistance of cables, to increase the hardness of a flooring compound and to reduce tackiness of highly plasticized compounds. Various calcium carbonate are used for general purpose work, china clay is commonly employed for electrical insulation, and asbestos for flooring applications. Also employed occasionally are the silicas and silicates, talc, light magnesium carbonate and barites (barium sulfate). Polymer Energy system is an award winning, innovative, proprietary process to convert waste plastics into renewable energy. Polymers are the most rapidly growing sector of the materials industry. No wonder polymers are found in everything from compact discs to high tech aerospace applications. On the basis of value added, Indian share of plastic products industry is about 0.5% of national GDP.

Some of the astonishing fundamentals of the book are industrial polymers, addition polymers polyolefins, polyethylene, chlorinated polyethylene, cross linked polyethylene, linear low density polyethylene (LLDPE), high molecular weight polyethylene, high density polyethylene, ultrahigh

molecular weight polyethylene, polypropylene, poly(vinyl chloride), stabilizers, plasticizers, extenders, mineral filled or glass bead/milled glass grades, antistatic/electro conductive grades, electroplatable grades, etc.

The present book enlightens the processing of industrial polymers, additives, colourant and fillers. This book is an invaluable resource to new entrepreneurs, technocrats, researchers, professionals etc.

1. INDUSTRIAL POLYMERS

INTRODUCTION

PART I: ADDITION POLYMERS

POLYOLEFINS

Polyethylene

Chlorinated Polyethylene

Cross-Linked Polyethylene

Linear Low-Density Polyethylene (LLDPE)

High-Molecular-Weight High-Density Polyethylene

Ultrahigh-Molecular-Weight Polyethylene

Polypropylene

Poly(Vinyl Chloride)

Stabilizers

Plasticizers

Extenders

Lubricants

Fillers

Pigments

Impact Modifiers and Processing Aids

Properties and Applications

Pastes

Poly(Vinylidene Chloride)

Polytetrafluoroethylene

Processing

Applications

Polyisobutylene

Polystyrene

Polybutadiene (Butadiene Rubber)

Polyisoprene

Polychloroprene

OLEFIN COPOLYMERS

Styrene-Butadiene Rubber

Nitrile Rubber

Ethylene-Propylene Elastomer

Butyl Rubber

Thermoplastic Elastomers

Styrene-Diene-Styrene Triblock Elastomers

Thermoplastic Polyester Elastomers

Thermoplastic Polyurethane Elastomers

Thermoplastic Polyolefin Elastomers

Ionic Elastomers

Fluoroelastomers

Styrene-Acrylonitrile Copolymer

Acrylonitrile-Butadiene-Styrene Terpolymer

Ethylene-Methacrylic Acid Copolymers (Ionomers)

Ionomers

ACRYLICS

Polyacrylonitrile

Polyacrylates

Polymethacrylates

Polyacrylamide

Poly(acrylic acid) and Poly(methacrylic acid)

Acrylic Adhesives

VINYL POLYMERS

Poly (Vinyl Acetate)

Poly(Vinyl Alcohol)

Poly(Vinyl Acetals)

Poly(Vinyl Cinnamate)

Poly(Vinyl Ethers)

Poly(Vinyl Pyrrolidone)

Poly(Vinyl Carbazole)

PART II: CONDENSATION POLYMERS

POLYESTERS

Poly(Ethylene Terephthalate)

Poly(Butylene Terephthalate)

Poly(Dihydroxymethylcyclohexyl Terephthalate)

Unsaturated Polyesters

Polyester-Glass-Fiber Laminates (GRP, FRP)

Polyester Molding Compositions

Aromatic Polyesters

Wholly Aromatic Copolyester

Polycarbonates

POLYAMIDES

Aliphatic Polyamides

Properties

Applications

Aromatic Polyamides

Polyimides

Modified Polyimides

FORMALDEHYDE RESINS

Phenol-Formaldehyde Resins

Resols

Novolac

Urea-Formaldehyde Resins

Molding Powder

Processing

Properties and Applications

Melamine-Formaldehyde Resins

POLYURETHANES

Polyesters

Polyethers

Polycaprolactone

Polyurethane Rubbers and Spandex Fibers

Cross-Linked Polyurethane Rubbers

- (a) Prepolymer formation
- (b) Chain extension of prepolymer
- (c) Cross linking of chain-extended polyurethane

Thermoplastic Polyurethane Rubbers

Spandex Fibers

Flexible Polyurethane Foam

Applications

Rigid and Semirigid Polyurethane Foams

Polyisocyanurates

Polyurethane Coatings

ETHER POLYMERS

Polyacetal

Poly(Ethylene Oxide)

Applications

Polyethylene Glycol

Poly(ethylene Oxide)

Poly [Propylene Oxide]

Epoxy Resins

Resin Preparation

Curing

Other Epoxies

Applications

POLY(PHENYLENE OXIDE)

CELLULOSIC POLYMERS

REGENERATED CELLULOSE

Cellulose Nitrate

Cellulose Acetate

Other Cellulose Esters

Cellulose Ethers

PART III: SPECIAL POLYMERS

Heat-Resistant Polymers

POLY(PHENYLENE SULFIDE)

POLYSULFONE

Properties

Polyether Ether Ketone

Polybenzimidazole

SILICONES AND OTHER INORGANIC POLYMERS

Silicones

Silicone Fluids

Silicone Resins

Silicone Rubbers

Polyphosphazenes

Polythiazyl

FUNCTIONAL POLYMERS

Ion-Exchange Resins

Applications

Polymeric Reagents

Photoconductive Polymers

Electroconductive Polymers

Light-Sensitive Polymers

Piezoelectric Polymers

2. POLYETHYLENE, HIGH DENSITY (HDPE)

INTRODUCTION

CATEGORY

HISTORY

POLYMERIZATION

DESCRIPTION OF PROPERTIES

APPLICATIONS

ADVANTAGES/DISADVANTAGES

Advantages

Disadvantages

PROCESSING TECHNIQUES

Processability of HDPE

RESIN FORMS

SPECIFICATION OF PROPERTIES

Master Outline of Materials Properties

PROCESSING REQUIREMENTS

PROCESSING-SENSITIVE END PROPERTIES

SHRINKAGE

Mold Shrinkage Characteristics

3. ACETALS

ACETAL

CATEGORY

HISTORY

POLYMERIZATION

DESCRIPTION OF PROPERTIES

Specialty Grades

Reinforced Grades

Mineral-filled or Glass Bead/Milled Glass Grades

Antistatic/Electroconductive Grades

Electroplatable Grades

APPLICATIONS

ADVANTAGES/DISADVANTAGES

PROCESSING TECHNIQUES

Standard design chart for Acetal

Master Material Outline

RESIN FORMS

SPECIFICATION OF PROPERTIES

Master Outline of Materials Properteis

PROCESSING REQUIREMENTS

PROCESSING-SENSITIVE END PROPERTIES

SHRINKAGE

Standard Tolerance Chart

4. ALLYL RESINS (DAP/DAIP)

INTRODUCTION

CATEGORY

HISTORY

POLYMERIZATION

DESCRIPTION OF PROPERTIES

Mechanical Properties

Thermal Properties

Reinforcements

APPLICATIONS

Reinforced Laminates

Decorative Laminates

ADVANTAGES/DISADVANTAGES

PROCESSING TECHNIQUES

RESIN FORMS

SPECIFICATION OF PROPERTIES

PROCESSING REQUIREMENTS

PROCESSING-SENSITIVE END PROPERTIES

SHRINKAGE

5. FLUOROPOLYMERS, POLY(VINYLIDENE

FLUORIDE) (PVDF)

POLY(VINYLIDENE FLUORIDE)

CATEGORY

HISTORY

POLYMERIZATION

DESCRIPTION OF PROPERTIES

Thermal Properties

Mechanical Properties

Optical Properties

Environmental Properties

APPLICATIONS

ADVANTAGES/DISADVANTAGES

PROCESSING TECHNIQUES

RESIN FORMS

SPECIFICATION OF PROPERTIES

PROCESSING REQUIREMENTS

PROCESSING-SENSITIVE END PROPERTIES

SHRINKAGE

6. IONOMERS

IONOMER

CATEGORY

HISTORY

POLYMERIZATION

DESCRIPTION OF PROPERTIES

APPLICATIONS

ADVANTAGES/DISADVANTAGES

PROCESSING TECHNIQUES

RESIN FORMS

SPECIFICATION OF PROPERTIES

PROCESSING REQUIREMENTS

Film Extrusion

Injection Molding

PROCESSING-SENSITIVE END PROPERTIES

Moisture Absorption

Effect of Temperature on the Melt Flow

SHRINKAGE

7. POLYAMIDE-IMIDE (PAI)

STRUCTURE

CATEGORY

HISTORY

POLYMERIZATION

DESCRIPTION OF PROPERTIES

APPLICATIONS

ADVANTAGES/DISADVANTAGES

PROCESSING TECHNIQUES

RESIN FORMS

SPECIFICATION OF PROPERTIES

PROCESSING REQUIREMENTS

PROCESSING-SENSITIVE END PROPERTIES

SHRINKAGE

8. POLYBUTYLENE (PB)

STRUCTURE

CATEGORY

HISTORY

POLYMERIZATION

PROPERTIES

APPLICATIONS

ADVANTAGES AND DISADVANTAGES

PROCESSING TECHNIQUES

RESIN FORMS

SPECIFICATION OF PROPERTIES

PROCESSING REQUIREMENTS

PROCESSING-SENSITIVE END PROPERTIES

SHRINKAGE

9. POLYCARBONATE (PC)

POLYCARONATE

CATEGORY

HISTORY

POLYMERIZATION

DESCRIPTION OF PROPERTIES

APPLICATIONS

ADVANTAGES/DISADVANTAGES

PROCESSING TECHNIQUES

RESIN FORMS

SPECIFICATION OF PROPERTIES

PROCESSING REQUIREMENTS

PROCESSING-SENSITIVE END PROPERTIES

SHRINKAGE

10. POLYETHYLENE LINEAR LOW

DENSITY (LLDPE)

INTRODUCTION LLDP

CATEGORY

HISTORY

POLYMERIZATION

DESCRIPTION OF PROPERTIES

APPLICATIONS

ADVANTAGES/DISADVANTAGES

PROCESSING TECHNIQUES

RESIN FORMS

SPECIFICATION OF PROPERTIES

PROCESSING REQUIREMENTS

PROCESSING-SENSITIVE END PROPERTIES

11. FLEXIBLE POLY (VINYL CHLORIDE) (FPVC)

INTRODUCTION

CATEGORY

Vinyl Additives

HISTORY

POLYMERIZATION

DESCRIPTION OF PROPERTIES

Physical Properties

Thermal Properties

Mechanical Properties

Optical Properties

Environmental Properties

APPLICATIONS

ADVANTAGES/DISADVANTAGES

PROCESSING TECHNIQUES

RESIN FORMS

Additives

Polyblends

SPECIFICATION OF PROPERTIES

PROCESSING REQUIREMENTS

PROCESSING-SENSITIVE END PROPERTIES

SHRINKAGE

12. FILLERS, CALCIUM CARBONATE

CATEGORY

SOURCE

KEY PROPERTIES

PROCESSING CHARACTERISTICS

APPLICATIONS

COMMERCIAL GRADES

COMPOSITES CHARACTERISTICS

13. FILLERS, KAOLIN

AIR-FLOATED KAOLIN

WATER-WASHED KAOLIN

CALCINED KAOLIN

SURFACE-MODIFIED KAOLINS

14. FILLERS, MICA

CATEGORY

SOURCE

KEY PROPERTIES

PROCESSING CHARACTERISTICS

APPLICATIONS

COMMERCIAL GRADES

COMPOSITE CHARACTERISTICS

15. COLORANTS

INTRODUCTION

Color and its Measurements

Light

Colorants

PIGMENTS AND DYES

Major Organic Pigments

Inorganic Pigments

Characteristics of Dyes

Colorant Forms and Functions

The Importance of Dispersion

Coloring Do's and Dont's

Color Measurement and Matching

16. FILLERS, ALUMINA TRIHYDRATE (ATH)

CATEGORY

SOURCE

KEY PROPERTIES

PROCESSING CHARACTERISTICS

APPLICATIONS

POLYMERS FILLED

Unsuaturated polyester

Ероху

Cross-Linked Ethylene-Vinyl Acetate

Urethane

EPDM

PVC

Polyethylene

COMMERCIAL GRADES

COMPOSITE CHARACTERISTICS

17. ACRYLONITRILE-BUTADIENE-

STYRENE (ABS)

INTRODUCTION

CATEGORY

POLYMERIZATION

Chemistry

Other Monomers

Compounding

Pricing

PROPERTIES

Impact Resistance

Strength

Creep and Stress Relaxation

Fatigue

Heat Deflection

Flammability

Optical Properties

Ultraviolet Resistance

Chemical Resistance

Reinforcement

APPLICATIONS

Appliances

Automotive

Building and Construction

Business Machines/Consumer Electronics

Other Applications

ADVANTAGES/DISADVANTAGES

PROCESSING TECHNIQUES

Injection Molding

Extrusion

Thermoforming

Cold Forming

RESIN FORMS

MATERIAL PROPERTIES

PROCESSING REQUIREMENTS

Drying

Degradation

Regrind

PROCESSING-SENSITIVE END PROPERTIES

Molding Conditions to Maximize Specific Properties

Thermoforming

SHRINKAGE

18. FILLERS, FIBER GLASS

CATEGORY

SOURCE

KEY PROPERTIES

PROCESSING CHARACTERISTICS

APPLICATIONS

POLYMERS FILLED

COMMERCIAL GRADES

COMPOSITE CHARACTERISTICS

19. POLYETHYLENE, LOW DENSITY (LDPE)

INTRODUCTION

CATEGORY

POLYMERIZATION

DESCRIPTION OF PROPERTIES

APPLICATIONS

ADVANTAGES/DISADVANTAGES

RESIN FORMS

SPECIFICATION OF PROPERTIES

PROCESSING REQUIREMENTS

PROCESSING-SENSITIVE END PROPERTIES

SHRINKAGE

20. FILLERS, CALCIUM SULFATE

CATEGORY

Source

KEY PROPERTIES

PROCESSING CHARACTERISTICS

APPLICATIONS

Polyester Resin Systems

Laminate Sheet

Bulk Molding Compound

PVC Molding Compounds

PVC Plastisols

POLYMERS FILLED

Thermoplastics

Thermosets

COMMERCIAL GRADES

COMPOSITE CHARACTERISTICS

About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

Our various services are: Detailed Project Report, Business Plan for Manufacturing Plant, Start-up Ideas, Business Ideas for Entrepreneurs, Start up Business Opportunities, entrepreneurship projects, Successful Business Plan, Industry Trends, Market Research, Manufacturing Process, Machinery, Raw Materials, project report, Cost and Revenue, Pre-feasibility study for Profitable Manufacturing Business, Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Business Opportunities, Investment Opportunities for Most Profitable Business in India, Manufacturing Business Ideas, Preparation of Project Profile, Pre-Investment and Pre-Feasibility Study, Market Research Study, Preparation of Techno-Economic Feasibility Report, Identification and Section of Plant, Process, Equipment, General Guidance, Startup Help, Technical and Commercial Counseling for setting

up new industrial project and Most Profitable Small Scale Business.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs are often faced with the dilemma of zeroing in on a suitable product/line.

NIIR PROJECT CONSULTANCY SERVICES, 106-E, Kamla Nagar, New Delhi-110007, India. Email: npcs.india@gmail.com Website: NIIR.org

Thu, 01 May 2025 08:44:35 +0000