Cereals, or grains, are members of the grass family cultivated primarily for their starchy seeds (technically, dry fruits). Cereal grains are grown in greater quantities and provide more food energy worldwide than any other type of crop; they are therefore staple crops. Oats, barley, and some food products made from cereal grains. They are used for both human and animal food and as an industrial raw material. India produces cereals like wheat, rice, barley (jau), buckwheat, oats, corn (maize), rye, jowar (sorghum), pearl millet (bajra), millet (ragi), Sorghum, Triticale, etc.

India is the world's second largest producer of Rice, Wheat and other cereals. The huge demand for cereals in the global market is creating an excellent environment for the export of Indian cereal products. India is not only the largest producer of cereal as well as largest exporter of cereal products in the world. India have been offering incredible opportunities as they have an abundant amount of raw materials and a wide availability of cheap labor.

The book provides comprehensive coverage of the Drying, Milling and information regarding production method of Cereal Foods. It also covers Plant Layout, Process Flow Sheets and photographs of plant & Machinery with supplier's contact details.

Some of the fundamentals of the book are origin of wheat classification of wheat, endeavors to find industrial uses for wheat, criteria of wheat quality, botanical criteria of quality, milling principles, extraction rate and its effect on flour composition, grain structure as affecting grinding, definition of flour extraction stone milling: yields of products, roller milling: flour extraction rates, rice production and utilization, origin of rice, comparison of rice with other cereal grains, composition of rice and cereal, breeding rice varieties with specific, industrial uses for rice and rice by products, caryopsis and composition of rice, gross structure of the rice caryopsis and its milling fractions etc.

This book is essential for those who are interested in cereal areas can find the complete information from manufacture to final uses of Cereal Foods. The present time is an era of information, one should know about what is happening in the world to be able to compete effectively. It will be very informative and useful to consultants, new entrepreneurs, startups, technocrats, research scholars, libraries and existing units.

Contents

1. Wheat
Origin of Wheat
Classification of Wheat
Moisture Consideration
Comparison of Nutrient Values
The Concept of Wheat Quality
Feed Uses For Wheat
Endeavors to Find Industrial Uses for Wheat
Criteria of Wheat Quality
Botanical Criteria of Quality
Species
Varieties
Physical Criteria of Quality
Weight Per Unit Volume
Kernel Weight
Kernel Size and Shape
Kernel Hardness
Vitreousness
Color
Damaged Kernels
Impurities
Milling Quality
Chemical Criteria Of Quality
Moisture Content
Alpha-amylase Activity
Fat Acidity
Crude Fiber and Ash
Wheat-Grading Systems
Composition of Wheat
Proteins
Carbohydrates
Lipids
Minerals
Vitamins
Fiber
Pigments
Enzymes
Milling Principles
Extraction Rate and its Effect on Flour Composition
Grain Structure as Affecting Grinding
Definition of Flour Extraction
Stone-milling: Yields of Products
Roller-milling: Flour Extraction Rates
Extraction Rate and Flour Color
Some Factors Determining Commercial Extraction Rates
Changes in Ash, Thiamine, and Color with Increasing Extraction Rate
General Composition of Flours of different Extraction Rates
Effect of Increasing Extraction on Baking Quality
Roller-Milling Process
Breaking Process
Reduction Process
Grouping of Flour Streams According to Composition: Effect of Change in Extraction Rate
Some Recent Developments
Characteristics of Individual Flour Streams in Milling of White Flour
Proportions and Ash Contents.
Reduction Flours
Minerals
Phosphorus
Other Minerals
Flour Streams
Gluten
Protein Peptization, Proteolysis, Viscosity
Fat
Sugars and Maltose Figure
Sugars
Maltose Figure
B-Vitamins
Thiamine
Riboflavin
Niacin
Pentosans
Loaf Crumb Color
Baking Quality
Water-Absorption
Bread
Cookies (Biscuits)
Dry-cleaning of Wheat
Wheat Conditioning, Moisture Movement,
 Temperature Effects
Washing
Pick-up of Water by Wheat in Washing
Penetration Into Endosperm
Conditioning In Practice
Cold-Conditioning
Warm-Conditioning
Hot Conditioning
Steam-Treatment
Rolling Temperatures
Protein Displacement
Air Classification
Special Grinding of Flour
Usefulness of Products
Damage to Starch Granules in Milling
Factors In Individual Reductions
Coarse Particle (A) Reduction
Fine Particle Reduction
Effects With Successive Reductions
Effect of Wheat Type
The Breaking System
Quantitative Assessments
Germ in Milling
Path of the Germ in Milling
Contribution to Oil of Flour
Endosperm Structure as Affected by Milling
Endosperm Cells
Cell Walls
Experimental Milling
Criteria of Flour Quality
Definition of Flour Quality
Flour Quality and Strength
Components of Quality
Protein Content
Flour Viscosity
Enzyme Content
Amylase
Protease
Lipase
Absorption
Ash and Flour Color
Granulation Or Particle Size
Response to Additives
Color-Removing Agents
Maturing Agents
Enzyme Supplementation
Starch Damage
Methodology
Microbiology
Summary
Wheat Pigments and Flour Colour
Chemical Nature of Wheat Pigments
Xanthophyll
Carotene
Flavones
Pigments in Wheat and Flour
Pigments in the Developing Grain
Determination of the Total of Yellow Pigments
 In Flour Expressed as Carotenoids
Flour Color
Sources of Flour Colour
Methods of Measuring Flour Color
Technology of Flour Color
2. Rice
Production and Utilization
Origin of Rice
Comparison of Rice with Other Cereal Grains
Composition of Rice and Cereals
Breeding Rice Varieties With Specific
 Industrial Uses for Rice and Rice by-Products
Caryopsis and Composition of Rice
Gross Structure of the Rice Caryopsis and its Milling Fractions
Gross Structure
Pericarp and Tegmen
Aleurone Layer
Embryo
Starchy Endosperm
Milling Fractions
Changes In Structure During Grain Development
Structure and Composition
Structure of the Rice Kernel
Important Components
Proteins
Starch
Lipids
 Vitamins
Minerals
Other Constituents
Criteria of Rice Quality
Objective Versus Subjective Measurements of Criteria
Varieties
Grain Size, Shape, Weight, and Uniformity
Color and Translucence
Test Weight
Moisture Content
Impurities and Damaged Rice
Dockage
Damaged Kernels
Chalky Grains
Red Rice
Seeds or Kernels
Odours
Milling Quality
Milling Yield
Degree of Milling
Physicochemical Tests
Rice Drying
Harvesting Methods
Optimum Harvest Time
Preharvest Chemical Drying
Rice-Drying Terminology and Fundamentals
Kinds of Rice
Milling Yields
Weights
Moisture Content
Equilibrium Moisture Content
Drying-Rate Computation
Drying Methods
Forced-Air Drying
Deep-bed Driers
Supplemental Heat
Materials-Handling for Bin Driers
Continuous-flow, Heated-Air Driers
Tempering
Combination System of Drying
Batch Driers
Other Drying Methods
Commercial Rice Drying
Types of Enterprise
Receiving and Storing Undried Rice
Method for Increasing Drier-Facility Capacity
Sun and Shade Drying
Threshing and Winnowing
Mechanical Drying
Chemical Composition
 Carbohydrates
 Starch
 Soluble Sugars
 Nonstarch Polysaccharides
 Protein
 Fats
 Minerals
 Vitamins
 Phenolic Compounds
 Processing and Utilization
 Feed and Food Barley
 Animal
 Human
 Malting Barley
 Uses
 Marketing
 Classification and Prices Received
 Storage
4. Corn
 Anatomical Structure, Composition, and Properties
 Corn Types and Their Compositions
 Corn Quality and Grading Standards
 Corn Utilization
 Corn as Livestock Feed
 Direct Utilization of Corn as Food
 Alkali-Cooked Corn-based Foods
 Sweet Corn
 Popcorn, the Original Snack Food
 Separation of Corn Into its Component Fractions
 Dry Corn Milling
 The Tempering-Degerming Milling Process
 Products from the Tempering-Degerming Process
 Wet Corn Milling
 The Wet-Milling Process
 Wet Corn Mill Products
 Conversion of Raw Fractions into Value-Added Ingredients and Chemicals
 Modified Starches
 Corn Sweeteners
 Furfural Production from Corncobs
5. The Millets
 Introduction
 Structure and Physical Properties
 Composition
 Polyphenols and Antinutritional Factors
 Postharvest Technology
 Milling
 Wet Milling
 Food Uses
 Nutritional Value
 Feed Use
 Nutritional Value
 Human Studies
Effect of Decortication on Nutritional Value

6. Oats
 History
 Origin of Cultivated Oats
 Genetics and Breeding
 Cytogenetic Relationship of Species within Avena
 Genetic Markers
 Utilization of Germplasm Resources
 Breeding
 Breeding Objectives
 Breeding Procedures
 The Oat Plant
 The Mature Grain
 Chemical Composition
 Protein
 Protein Content and Distribution
 Solubility Classification
 Amino Acid Composition and Distribution
 Lipids
 Lipid Content and Distribution
 Lipid Composition
 Polysaccharides
 Starch
 B-glucan
 Minerals
 Vitamins
 Processing and Utilization
 Utilization
 Processing
 Cleaning
 Drying and Cooling
 Hulling
 Cutting and Flaking
 Oat Flour

7. Rye
 Rye Breeding
 Morphology and Kernel Characteristics
 Growing Conditions
 Rye Storage and Rye Grain Reserves and Disappearance
 Rye Milling
 Rye Flours
 Nutrient Composition of Rye
 Antinutritional Factors in Rye
 Food Uses of Ryees
 Industrial Uses of Rye
 Rye As Animal Feed

8. Sorghum
 Introduction
 Origin
 Structure and Physical Properties
 Appearance of Sorghum Grain and its Genetics
 Composition
 Tannins and Polyphenols: Effects on Sorghum
Quality and Nutritional Value
Industrial Utilization
Wet Milling
Sorghum Starches
Dry Milling
Alcohol Production
Use of Sorghum for Beer and Malt
Lager Beer
Sorghum Malt
Clear Sorghum Beer
 Sour, Opaque Beer
 Processing For use in Feeds
 Processing for Food
Traditional Food Systems
Sorghum in Baked and Pasta Products
Sorghum Syrup, Molasses, and Sugar
Nutritional Value
Nutritional Value of Sorghum as Livestock Feed
Human Digestibility Studies
Effect of Processing
9. Triticale
 History
 General Characteristics
 Grain Development and Structure
 Genetics and Breeding
 Production
 Quality Factors
 Damaged Kernels
 Defects
 Dockage
 Foreign Material
 Heat-Damaged Kernels
 Other
 Shrunken and Broken Kernels
 Basis of Determination
 Ergoty Triticale
 Garlicky Triticale
 Light Garlicky Triticale
 Light Smutty Triticale
 Smutty Triticale
 Composition and Nutritional Factors
 Utilization
 Future
10. Photographs of Plant & Machinery with Supplier’s Contact Details
11. Sample Plant Layout and Process Flow Sheets

About NIIR
NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.