Natural dyes are dyes or colorants derived from plants, invertebrates, or minerals. The majority of natural dyes are vegetable dyes from plant sources. Dyeing is the process of imparting colors to a textile material. Different classes of dyes are used for different types of fiber and at different stages of the textile production process, from loose fibers through yarn and cloth to completed garments. There are technologies that manufacture the pigments for plastics, rubber and cosmetics. Therefore; dyes and pigments have a vast area of applications and have a huge demand in industry. Contrary to popular opinion, natural dyes are often neither safer nor more ecologically sound than synthetic dyes. They are less permanent, more difficult to apply, wash out more easily, and often involve the use of highly toxic mordant. Of course, the colour possibilities are far more limited; the color of any natural dye may be easily copied by mixing synthetic dyes, but many other colors are not easily obtained with natural dyes. However, some mordant are not very toxic, and the idea of natural dyestuffs is aesthetically pleasing. Applying natural dyes in your fabric production using enzymes will reduce your production cost and improve control. There are various kind of natural dyes; quinonoid dyes, cyanine dyes, azo dyes, biflavonyl dyes, omochromes, anthraquinone, coprosma gesus etc. The use of natural dyes in cloth making can be seen as a necessary luxury to trigger off a change in habits. Dyes which stand out for their beauty and ecological attributes would never be employed on just any material but on noble fabrics such as wool, silk, linen or cotton, made to last more than one season. Market value will benefit from consumer preferences for environmentally friendly products, which will support consumption of high performance dyes and organic pigments.

This book basically deals with the use of carotenoids as food colours, bianthraquinones and related compounds, intermediate degradation products of biflavonyls, dyestuffs containing nuclear sulphonie and carboxylic acid groups, quinonoid dyes, cyanine dyes, optical whitening agents, natural dyes for food, stability of natural colourants in foods effect of additives, pyrimidine pigments, the total synthesis of the polyene pigments, red pigment from geniposidic acid and amino compound, effect of acid and amine on the formation of red pigment from geniposidic acid, effect of the substituted position of amino group and chain length of amino compound etc.

Due to pollution problems in synthetic dyes and pigments industry, the whole world is shifting towards the manufacturing of natural dyes and pigments. The present book contains techniques of producing different natural dyes and pigments, which has huge demand in domestic as well as in foreign market. It is hoped that entrepreneurs, technocrats, existing units, institutional libraries will find this book very useful.

Contents

1. Ommochromes
Distribution
A. Ommatins
B. Ommins
Isolation and Purification
A. Ommatins
B. Ommins
Structure of the Ommochromes*
 Xanthommatin
 Ommatin D
 Rhodommatin
 Ommin A X
Biogenesis
2. Bisdehydrocanthaxanthin
3. Carotenoids Field
Carotenoid Biogenesis
Carotenoid Total Syntheses
The use of Carotenoids as Food Colours
4. Black pigments
Animal Pigments
 Melanins
Sclerotization
Plant Pigments
 Humic acids
 1,8-Dihydroxynaphthalene polymers
5. Anthraquinone
Plant Pigments
Insect Pigments
6. Coprosma genus
7. Bianthraquinones and related compounds
 Skyrin
 Oxyskyrin
 Skyrinol
 Iridoskyrin
 Rugulosin
 Luteoskyrin and Rubroskyrin
 Lumiluteoskyrin
 Flavoskyrin
Biogenesis
8. The Biflavonyl Pigments
The First Investigations
 The Work of Nakazawa on Ginkgetin
 The Work of the Bristol Group
 On Ginkgetin and Isoginkgetin
 The Work of Kariyone and Kawano on
 Sciadopitysin, 1956
 Further Work of Brispol Group on
 Ginkgetin and Sciadopitysin
 The Work of Kawano on Sciadopitysin and GINKGETIN, 1959
 The Synthesis of Ginkgetin Tetramethyl ether, Nakazawa, 1959
 The Structure of Ginkgetin
 The Structure of Isoginkgetin
 The Structure of Kayafayavone
 The Structure of Sotetsuflavone
Summary of Biflavonyl Structures

Intermediate Degradation Products of Biflavonols
Optical Inactivity of the Biflavonols
The Structure of Hinokiflavone
Natural Occurrence of Biflavonols
9. Azo dyes
10. Dyestuffs
Introduction

Primary Products for VS-Dyestuffs
1. Methods of preparation
2. Reactions

Processes for the Manufacture of VS-Dyestuffs

Fastness and Dyeing Properties of VS-Dyestuffs
1. VS-Dyestuffs free from nuclear sulphonie and carboxylic acid groups
2. Dyestuffs containing nuclear sulphonie and carboxylic acid groups

Summary
11. Disperse dyes
Light Fastness
Gas Fastness
Sublimation Fastness
Wash Fastness

Structural Modifications Leading to All-Round Fastness
12. Quinonoid dyes
13. Cyanine dyes
Chemistry of 2, 3-Dichloro-1,4-Naphthoquininone (I)
Chemistry of Chloranil (II)

Vat Dyes from Chloranil
Benzodipyrrrocolinequinones Pyrrocolinequinones,
Unsymmetrical Dipyrrrocolinequinones and Naphth of Uranopyrrrocolinequinones
2-alkylamino-(arylamino)-3-chloro-1,
4-naphthoquinones And Di-3-(2-chloro-1,
4-naphthoquinonyl)-alkylamines And Arylamines
Cellulose Acetate Dyes From (i) And (ii)

Synthesis Of Non-coplanar Quinonoid Dyes
14. Fluorescent brightening agents
15. Optical whitening agents

Introduction

Physical Considerations of Fluorescence and Optical Whitening

Chemical constitution of Optical Whitening Agents
1. Stilbene derivatives
2. Benzidine derivatives
3. Benzthiazole, benzoxazole and benziminazole derivatives
4. Coumarins
5. Pyrazolines
6. Other types

Some Specific Applications of Optical Whitening Agents
1. Soaps and detergents
2. Textile applications
16. Natural dyes for Food
Natural Colourants
- Natural Colours Presently Used in Food
- Methods of Improving Natural Colourants
- Novel Sources of Natural Colourants
 - Microbial Sources
 - Animal Sources
 - Plant Source
- General Reviews
 - Colourants from By-products
 - Gardenia Extracts
 - Other Sources
- Feasibility of Novel Sources
- Stability of Natural Colourants in Foods
 - Effect of Additives
 - Ascorbic Acid and Derivatives
 - Effect of Metal Ions
 - Effect of Neutral Salts
 - Effect of Organic Acids
 - Photoprotection
 - Miscellaneous Additives
- Conclusion
- Stable Forms of Natural Colourants Found in Vivo
- Stabilised Forms Of Natural Colourants
 - Flavonoids
 - Chemical Features Affecting Stability
 - Self association
 - Complex formation
 - Copigmentation
 - Condensation
 - Chemical modifications
- Porphyrins
- Others
- 17. Pyran Pigments : I. Flavones and Flavonols
 - Flavones
 - Chrysin (IV)
 - General Methods of Synthesis of Flavones
 - A. From Aromatic Diketones
 - B. From o-Hydroxyacetophenones
 - C. From o-Hydroxychalkones
 - D. From Phenols
 - Flavonols
 - The Wessely-moser and Related Rearrangements of Flavones
 - The Formation of Salts by Flavones and Flavonols
 - The Reduction of Flavones
 - Isoflavones
 - The Synthesis of Isoflavones
- 18. Pyran Pigments : II. Anthocyanins and Anthocyanidins
 - Cyanidin (III)
 - The Synthesis of Anthocyanidins
 - The Synthesis of Anthocyanins
 - Color Reactions of The Anthocyanidins and Anthocyanins
 - Anhydrobases
 - Carajurin (XCIX)
 - Dracorubin (CXXV)
19. Pyran Pigments: III. Xanthones
 Ravenelin (II)
 Mangostin (XI)

Pyran Pigments: IV. Rottlerin
Pyran Pigments: V. Brazilin and Mematoxylin
Brazilin (XXXII)
Hematoxylin (XL)
Trimethylbrazilone (XLI)
Brazilein (LXXIX, R - H)
The Synthesis of Brazilin

Pyrrole Pigments: I. The Porphyrins
 Hemin (cxxxvii)
The Synthesis of Dipyrrylmethenes
The Synthesis of Porphyrins
 The Structure of Hemin
Pyrrole Pigments: II. Chlorophylls
Pheoporphyrin, Chloroporphyrin, and Phylloerythrin
The Vinyl Group in Chlorophyll
The Structure of Chlorophyll
 Position of the Phytyl Group in Chlorophyll
 The Phase Test
Allomerization
Approaches to the Synthesis of Chlorophyll
Chlorophyll-b
Bacteriochlorophyll

20. Pyrrole Pigments: III. The Bile Pigments
Bilirubin (XXXII)
 Verdins
 Violins
 Bilenes
 Bilanes
Stereochemy and Tautomerism
Complex Salts of the Bile Pigments

Pyrrrole Pigments: IV. Prodigiosin

21. Pyrimidine Pigments: The pterins
The Gmelin Reaction

22. Quinonoid Pigments
Benzoquinonoid Pigments
 Perezone (XII)
 Polyporic Acid (XIV)
 Astromentin (XXVIII)
 Phoenicin (LXI)
Naphthaquinonoid Pigments
 Lapachol (LXXI)
 Eleutherin (CXXI)
 Alkannin and Shikonin (CXLIX)
Anthraquinonoid Pigments
 Helminthosporin (CLVIII)
 Kermesic Acid (CLXI)
 Skyrin (CLXXXVIII)
Extended Quinone Pigments
 The Aphin Pigments
Erythroaphin-fb (CCXVI) or (CCXVII)
Hypericin (CCXXV)

23. Polyene Pigments
Bixin (X) and Croceting (XI) the Carotenes
 b-Carotene (LV)
 Lycopene (LXXIII)
The Total Synthesis of the Polyene Pigments
Combination of Units in the Order C19 + C2 + C19
Combination of Units in the Order C16 + C8 + C16
Combination of units in the Order C14 + C12 + C14
Combination of Units in the Order C10 + C20 + C10
The Dehydro - Retrodehydrocarotenoids Epoxides
and Furanoid Oxides

24. Anthocyanins from Indian varieties of Grapes
Material and Methods
 Extraction
 Purification
 Total anthocyanins
 Separation
 Partial hydrolysis of anthocyanin
Aglycone and sugar
 Acyl moieties
 Spectral measurements
 Thin layer chromatography
Results and Discussion
 Recovery of anthocyanin
 Separation of pigments by paper chromatography
 Absorption spectra of pigments
 Partial hydrolysis of anthocyanins
 Aglycones
 Sugar identification
 Acyl moieties

25. Red pigment from Geniposidic Acid and Amino Compound
Materials and Methods
 Preparation of geniposide (GS) and GSA solution
 Preparation of other iridoid compounds
 Enzyme and reagents
 General method of preparation of pigment
 Evaluation of pigment
 Identification and quantification of carbon dioxide
 HPLC and NMR measurement
 Structural relationship of iridoids to red pigment production
 Acidity and evolution of carbon dioxide
 Time course of enzymic reaction
 Acidity and atmosphere on the reaction
 HPLC monitoring of the pigment formation from GAA
 and a-alanine
 NMR monitoring of the pigment formation from GAA
 and methylamine
Results and Discussion
 The relationship between the evolution of carbon dioxide
 and reaction pH
 The process of formation of red pigment
Molecular mass and colour evaluation of red pigment derived from GAA and a-alanine
NMR spectroscopy of red pigment formed from GAA and methylamine
Monitoring of the reaction by NMR
The formation mechanism of red pigment

26. Effect of Acid and Amine on the formation of Red Pigment from Geniposidic Acid

Materials and Methods
- Preparation of geniposide (GS)
- Preparation of geniposidic acid (GSA) solution
- Enzyme and reagents
- General procedure for the red pigment formation
- Evaluation of pigment
- Kind of acid
- The concentration of organic acid
- The substituted position of amino group and chain length of amino compound
- Kind of amino compound

Results and Discussion
- Effect of acid
- Effect of the substituted position of amino group and chain length of amino compound
- Kind of amino compound

About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

NIIR PROJECT CONSULTANCY SERVICES , 106-E, Kamla Nagar, New Delhi-110007, India. Email: npcs.india@gmail.com Website: NIIR.org