Natural dyes are dyes or colorants derived from plants, invertebrates, or minerals. The majority of natural dyes are vegetable dyes from plant sources. Dyeing is the process of imparting colors to a textile material. Different classes of dyes are used for different types of fiber and at different stages of the textile production process, from loose fibers through yarn and cloth to completed garments. There are technologies that manufacture the pigments for plastics, rubber and cosmetics. Therefore; dyes and pigments have a vast area of applications and have a huge demand in industry. Contrary to popular opinion, natural dyes are often neither safer nor more ecologically sound than synthetic dyes. They are less permanent, more difficult to apply, wash out more easily, and often involve the use of highly toxic mordant. Of course, the colour possibilities are far more limited; the color of any natural dye may be easily copied by mixing synthetic dyes, but many other colors are not easily obtained with natural dyes. However, some mordant are not very toxic, and the idea of natural dyestuffs is aesthetically pleasing. Applying natural dyes in your fabric production using enzymes will reduce your production cost and improve control. There are various kind of natural dyes; quinonoid dyes, cyanine dyes, azo dyes, biflavonyl dyes, omochromes, anthraquinone, coprosma geseus etc. The use of natural dyes in cloth making can be seen as a necessary luxury to trigger off a change in habits. Dyes which stand out for their beauty and ecological attributes would never be employed on just any material but on noble fabrics such as wool, silk, linen or cotton, made to last more than one season. Market value will benefit from consumer preferences for environmentally friendly products, which will support consumption of high performance dyes and organic pigments.

This book basically deals with the use of carotenoids as food colours, bianthraquinones and related compounds, intermediate degradation products of biflavonols, dyestuffs containing nuclear sulphonnic and carboxylic acid groups, quinonoid dyes, cyanine dyes, azo dyes, biflavonyl dyes, omochromes, anthraquinone, coprosma geseus etc. The use of natural dyes in cloth making can be seen as a necessary luxury to trigger off a change in habits. Dyes which stand out for their beauty and ecological attributes would never be employed on just any material but on noble fabrics such as wool, silk, linen or cotton, made to last more than one season. Market value will benefit from consumer preferences for environmentally friendly products, which will support consumption of high performance dyes and organic pigments.

Due to pollution problems in synthetic dyes and pigments industry, the whole world is shifting towards the manufacturing of natural dyes and pigments. The present book contains techniques of producing different
natural dyes and pigments, which has huge demand in domestic as well as in foreign market. It is hoped that entrepreneurs, technocrats, existing units, institutional libraries will find this book very useful.

Contents

1. Ommochromes
 Distribution
 A. Ommatins
 B. Ommins
 Isolation and Purification
 A. Ommatins
 B. Ommins
 Structure of the Ommochromes*
 Xanthommatin
 Ommatin D
 Rhodommatin
 Ommin A X
 Biogenesis
2. Bisdehydrocanthaxanthin
3. Carotenoids Field
 Carotenoid Biogenesis
 Carotenoid Total Syntheses
 The use of Carotenoids as Food Colours
4. Black pigments
 Animal Pigments
 Melanins
 Sclerotization
 Plant Pigments
 Humic acids
 1,8-Dihydroxynaphthalene polymers
5. Anthraquinone
 Plant Pigments
 Insect Pigments
6. Coprosma genus
7. Blantheraquinones and related compounds
 Skyrin
 Oxyskyrin
 Skyrinol
 Iridoskyrin
 Rugulosin
 Luteoskyrin and Rubroskyrin
 Lumiluteoskyrin
 Flavoskyrin
 Biogenesis
8. The Biflavonyl Pigments
 The First Investigations
 The Work of Nakazawa on Ginkgetin
 The Work of the Bristol Group
 On Ginkgetin and Isoginkgetin
 The Work of Kariyone and Kawano on
 Sciadopitysin, 1956
Further Work of Brispol Group on Ginkgetin and Sciadopitysin

The Work of Kawano on Sciadopitysin and GINKGETIN, 1959

The Synthesis of Ginkgetin Tetramethyl ether, Nakazawa, 1959

The Structure of Ginkgeting

The Structure of Isoginkgetin

The Structure of Kayafyavone

The Structure of Sotetsuflavone

Summary of Biflavonyl Structures

Intermediate Degradation Products of Biflavonys

Optical Inactivity of the Biflavonys

The Structure of Hinokiilavone

Natural Occurence of Biflavonys

9. Azo dyes

10. Dyestuffs

Introduction

Primary Products for VS-Dyestuffs

1. Methods of preparation

2. Reactions

Processes for the Manufacture of VS-Dyestuffs

Fastness and Dyeing Properties of VS-Dyestuffs

1. VS-Dyestuffs free from nuclear sulphonic and carboxylic acid groups

2. Dyestuffs containing nuclear sulphonic and carboxylic acid groups

Summary

11. Disperse dyes

Light Fastness

Gas Fastness

Sublimation Fastness

Wash Fastness

Structural Modifications Leading to All-Round Fastness

12. Quinonoid dyes

13. Cyanine dyes

Chemistry of 2, 3-Dichloro-1,4-Naphthoquininone (I)

Chemistry of Chloranil (II)

Vat Dyes from Chloranil

Benzodipyrocolinequinones Pyrrocolinequinones,

Unsymmetrical Dipyrrocolinequinones and Naph of Uranopyrocolinequinones

2-alkylamino-(arylamino)-3-chloro-1,

4-naphthoquinones And Di-3-(2-chloro-1,

4-naphthoquinonyl)-alkylamines And Arylamines

Cellulose Acetate Dyes From (i) And (ii)

Synthesis Of Non-coplanar Quinonoid Dyes

14. Fluorescent brightening agents

15. Optical whitening agents

Introduction

Physical Considerations of Fluorescence and Optical Whitening

Chemical constitution of Optical Whitening Agents

1. Stilbene derivatives

2. Benzidine derivatives

3. Benzthiazole, benzoazole and benziminazole derivatives
4. Coumarins
5. Pyrazolines
6. Other types

Some Specific Applications of Optical Whitening Agents
1. Soaps and detergents
2. Textile applications

16. Natural dyes for Food

Natural Colourants
 Natural Colours Presently Used in Food
 Methods of Improving Natural Colourants

Novel Sources of Natural Colourants
 Microbial Sources
 Animal Sources
 Plant Source
 General Reviews
 Colourants from By-products
 Gardenia Extracts
 Other Sources
 Feasibility of Novel Sources

Stability of Natural Colourants in Foods Effect of Additives
 Ascorbic Acid and Derivatives
 Effect of Metal Ions
 Effect of Neutral Salts
 Effect of Organic Acids
 Photoprotection
 Miscellaneous Additives
 Conclusion

Stable Forms of Natural Colourants Found in Vivo

Stabilised Forms Of Natural Colourants Flavonoids
 Chemical Features Affecting Stability
 Self association
 Complex formation
 Copigmentation
 Condensation
 Chemical modifications

Porphyrrins

Others

17. Pyran Pigments : I. Flavones and Flavonols

Flavones
 Chrysin (IV)

General Methods of Synthesis of Flavones
 A. From Aromatic Diketones
 B. From o-Hydroxyacetophenones
 C. From o-Hydroxychalkones
 D. From Phenols

Flavonols
 The Wessely-moser and Related
 Rearrangements of Flavones
 The Formation of Salts by Flavones and Flavonols
 The Reduction of Flavones

Isoflavones
 The Synthesis of Isoflavones
18. Pyran Pigments: II. Anthocyanins and Anthocyanidins
Cyanidin (III)
The Synthesis of Anthocyanidins
The Synthesis of Anthocyanins
Color Reactions of The Anthocyanidins and Anthocyanins
Anhydrobases
 Carajurin (XCIX)
 Dracorubin (CXXV)
19. Pyran Pigments: III. Xanthones
Ravenelin (II)
Mangostin (XI)
Pyran Pigments: IV. Rottlerin
Pyran Pigments: V. Brazilin and Mematoxylin
Brazilin (XXXII)
Hematoxylin (XL)
Trimethylbrazilone (XLI)
Brazilin (LXXIX, R - H)
The Synthesis Of Brazilin
Pyrrole Pigments: I. The Porphyrins
Hemin (cxxxvii)
The Synthesis of Dipyrrylmethenes
The Synthesis of Porphyrins
 The Structure of Hemin
Pyrrole Pigments: II. Chlorophylls
Pheoporphyrin, Chloroporphyrin, and Phylloerythrin
The Vinyl Group in Chlorophyll
The Structure of Chlorophyll
 Position of the Phytly Group in Chlorophyll
 The Phase Test
Allomerization
Approaches to the Synthesis of Chlorophyll
Chlorophyll-b
Bacteriochlorophyll
20. Pyrrole Pigments: III. The Bile Pigments
Bilirubin (XXXII)
 Verdins
 Violins
 Bilenes
 Bilanes
Stereochemistry and Tautomerism
Complex Salts of the Bile Pigments
Pyrrole Pigments: IV. Prodigiosin
21. Pyrimidine Pigments: The pterins
The Gmelin Reaction
Pterorhodon
22. Quinonoid Pigments
Benzoquinonoid Pigments
 Perezone (XII)
 Polyporonic Acid (XIV)
 Astromentin (XXVIII)
 Phoenicin (LXI)
Napthaquinonoid Pigments
Lapachol (LXXI)
Eleutherin (CXXI)
Alkannin and Shikonin (CXLIX)
Anthraquinonoid Pigments
Helminthosporin (CLVIII)
Kermesic Acid (CLXI)
Skyrin (CLXXVIII)

Extended Quinone Pigments
The Aphn Pigments
Erythroaphin-fb (CCXVI) or (CCXVII)
Hypericin (CCXXV)

23. Polyene Pigments
Bixin (X) and Croceting (XI) the Carotenes
b-Carotene (LV)
Lycopene (LXXIII)
The Total Synthesis of the Polyene Pigments
Combination of Units in the Order C19 + C2 + C19
Combination of Units in the Order C16 + C8 + C16
Combination of units in the Order C14 + C12 + C14
Combination of Units in the Order C10 + C20 + C10
The Dehydro - Retrodehydrocarotenoids Epoxides and Furanoid Oxides

24. Anthocyanins from Indian varieties of Grapes
Material and Methods
Extraction
Purification
Total anthocyanins
Separation
Partial hydrolysis of anthocyanin
Aglycone and sugar
Acyl moieties
Spectral measurements
Thin layer chromatography

Results and Discussion
Recovery of anthocyanin
Separation of pigments by paper chromatography
Absorption spectra of pigments
Partial hydrolysis of anthocyanins
Aglycones
Sugar identification
Acyl moieties

25. Red pigment from Geniposidic Acid and Amino Compound
Materials and Methods
Preparation of geniposide (GS) and GSA solution
Preparation of other iridoid compounds
Enzyme and reagents
General method of preparation of pigment
Evaluation of pigment
Identification and quantification of carbon dioxide
HPLC and NMR measurement
Structural relationship of iridoids to red pigment production
Acidity and evolution of carbon dioxide
Time course of enzymic reaction
Acidity and atmosphere on the reaction
HPLC monitoring of the pigment formation from GAA and α-alanine
NMR monitoring of the pigment formation from GAA and methylamine

Results and Discussion
The relationship between the evolution of carbon dioxide and reaction pH
The process of formation of red pigment
Molecular mass and colour evaluation of red pigment derived from GAA and α-alanine
NMR spectroscopy of red pigment formed from GAA and methylamine
Monitoring of the reaction by NMR
The formation mechanism of red pigment

26. Effect of Acid and Amine on the formation of Red Pigment from Geniposidic Acid

Materials and Methods
Preparation of geniposide (GS)
Preparation of geniposidic acid (GSA) solution
Enzyme and reagents
General procedure for the red pigment formation
Evaluation of pigment
Kind of acid
The concentration of organic acid
The substituted position of amino group and chain length of amino compound
Kind of amino compound

Results and Discussion
Effect of acid
Effect of the substituted position of amino group and chain length of amino compound
Kind of amino compound

About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by
manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs are often faced with the dilemma of zeroing in on a suitable product/line.