The production of degradable organic waste and its safe disposal have become the current global problem. The rejuvenation of degraded soils by protecting topsoil and sustainability of productive soils is a major concern at the international level. Vermicomposting is compatible process with sound environmental principles that value conservation of resources and sustainable practices. Vermicompost is known to be the world best organic fertilizer. Vermiculture is for vermicompost. Vermiculture means artificial rearing or cultivation of worms (Earthworms) and the technology is the scientific process of using them for the betterment of human beings. Vermiculture technology has improved the crop productivity by increasing soil fertility through ecological methods of farming. Vermiculture has been embraced throughout the world right from the developed countries to the developing countries. Vermicomposting is a panacea for solid waste management. It is a simple kindred process of composting, in which certain species of microorganism such as earthworms are used to enhance the process of waste conversion and produce a better end product. Earthworms serve as nature plowman to facilitate these functions. They form gift of nature to produce good humus, which is the most precious material to fulfill the nutritional needs of crops. The utilization of vermicompost results in several benefits to farmers, industries, environment and overall national economy. This contains experiments from the field, vermicomposting materials, earthworm life cycle, ecological types earthworms, role of earthworms, vermicomposting, advantages of vermiculture, vermitechnology. This book majorly deals with advantages of vermicomposting, vermicomposting in daily life vermiculture v/s vermicomposting, earthworms: ecological types, physical and chemical effects of earthworms on soils, fertilizers use and deterioration of soil environment, vermicomposting materials, feeding vermicomposting materials, ideal conditions for life of earthworms, earthworms : their application in organic agriculture, maintenance of vermicomposting beds, vermicomposting : general procedures at agricultural farms vermicomposting : kiss plan, vermicomposting: a world scenario, soil fertility and texture, advantages of vermiculture, small scale or indoor vermicomposting, large scale or outdoor vermicomposting etc. This book is an invaluable resource for readers, entrepreneurs, scientists, farmers, existing industries, technical institution, etc.

Contents

1. INTRODUCTION
 Advantages of Vermicomposting
 Vermicomposting in Daily life
 Vermiculture v/s Vermicomposting
 Vermitechnology (VT)
Progress of worm industry
Turning Garbage into Money
Chemical composition of the Vermicompost
Vermicomposting at Home
Vermicomposting on the Farm
The Business of Worms
Interaction of Vermicompost-Earthworm-Mulch-Plantroot (Vemp)
Earthworm Farming is not hard

2. EARTHWORMS: ECOLOGICAL TYPES
Trophic Classification of Earthworms
Drilosphere
Physical effects of Earthworms on soils
Chemical effects of Earthworms on soils
The effect of absence of Earthworms in soils

3. PHYLUM ANNELIDA: EARTHWORM
Earthworms
Economic Importance
Pheretima Poshuma
The Body Wall
Locomotion
The Coelom
The Digestive System
Food and Digestion
Respiration
Excretory Organs
Physiology of Excretion
Chloragogen Cells
Vascular System
The nervous system
Working of the Nervous system
Receptor Organs
Generative Organs
Copulation
Fertilization and Cocoon Formation
Classification

4. EARTHWORMS: LIFE CYCLE
Life cycle studies
Life cycle patterns
Life cycle-Lampito mauritii
Cocoons
Juveniles
Non-clitellates
Clitellates
Life Cycle-Perionyx excavatus
Cocoons
Juveniles
Non-clitellates
Clitellates
Doubling Time
Biochemical changes during growth
5. EARTHWORMS: FOR CULTURE
Worms for Vermiculture
Earthworm Breeding
Vermicompost
Collecting local earthworms

6. WHY VERMICOMPOSTING
Fertilizers use and deterioration of Soil Environment
Testing the impact of Vermicomposting
Nitrogen and Humification in Vermicomposting
Vermicompost - a quality manure
Recycling of wastes through Vermi-composting
Minimizing Pollution Hazard
Providing growth promoters
Vermicomposting : Advantages
Black gold (worm castings) from worms
Adverse Effects on Crops
Economic Vibility

7. VERMICULTURE AND VERMITECH
How to Start Vermiculture
Preparation of Vermibeds
Setting Up of a Vermiwash Unit
An Enterprise
Economics of Vermitech (In Indian Rupees)
Construction and maintenance of a Twin Unit System Marketing

8. VERMICOMPOSTING MATERIALS
Animal dung
Agricultural waste
Forestry wastes
City leaf litter
Waste paper and cotton cloth etc.
City refuge
Biogas slurry
Industrial wastes
Feeding Vermicomposting Materials
What should not be Fed to Earthworms?
How much Earthworm Eat
How to Feed Earthworm?
Vermicomposting : Types
Small scale or Indoor Vermicomposting
Large scale or outdoor Vermicomposting
In-situ culturing of earthworms
Simple promotion of vermic activity in fields
Development of Earthworms in Gardens and Orchards
Large Scale Commercialized Vermicomposting in Open Heaps
Vermicomposting : Requirements
Environmental Requirements
Air (Aeration)
Moisture Content
Temperature
How to Construct a Worm Bin
Bedding Materials
Other Requirements
Container
Containers : Types
Small Barrel or Drum Composter
Large Barrel or Drum Composter
Three-chambered Bin
Making of three-chambered bin
Bedding Material
Ideal Conditions for Life of Earthworms
Food for Worms
Adding Food Waste
Proper Ingredient Mixture
Browns
Greens
Particle Size
Fertilizer and Lime
pH
Other Factor Affecting Earthworm's Growth
Earthworm and Insects
Tilling and Earthworm Population
Earthworm and come Drouning
Maintaining the Bin
Harvesting the Compost and Worms
General Problems in Production of Vermicomposting Remember

9. EXPERIMENTS FROM THE FIELD
Earthworms: Their Effect on Plant Growth
Growing vegetables
Are Earthworms Alone?
Effect on soil quality
Soil loss
Adverse Effects on Crops
Impact of Chemicals on Earthworms
Impact of Heavy Metals
Earthworms in Food Chains
Earthworm Parasites

10. EARTHWORMS : THEIR APPLICATION IN ORGANIC AGRICULTURE
Organic Method Under Rainfed Conditions
I. Cultivation of groundnut (per acre) (All costs in Indian rupees)
Cost of Field Preparation
Net Profit From Both Types of Cultivation (per acre)
II. Cultivation of brinjal (per acre)
Net Profits from both Types of Cultivation (per acre)
III. Cultivation of Okra (per acre)
Net profit From Cultivation
IV. Cultivation of Paddy
V. Cultivation of sugarcane

11. WAYS TO MAKE COMPOST
Selection of Suitable Species
Epiges (Eisenia fetida)
Endoges (Eudrilus eugeniae)
Aneciques

Basic Characteristics of Suitable Species
Composting Material: Preliminary Treatment
Vermicomposting Schemes
Maintenance of Vermicomposting Beds
Scheme One
Scheme Two
Scheme Three
Scheme Four
Scheme Five
Scheme Six
Harvesting the Worms and Compost
Using Worm Compost
Vermicomposting Efficiency
Transportation of Live Worms
Vermicompost: Applications
Flower or Garden pots
In Horticulture
In Agriculture
Vermicomposts: Characterization
Vermiwash
Problems in Using Vermiwash
Earthworm Paste
Vermicomposting: General Procedure at Home
Vermicomposting: General Procedures at Agricultural Farms
Vermicomposting: Kiss Plan
Advantages of KISS Plan
Step 1: Windrow Preparation
Important Considerations
Step 2: Extending the Windrow
Step 3: Making Quality Castings
Step 4: Moisture and Irrigation
Step 5: Windrow Cover
Step 6: Harvesting
Earthworms Predators and Parasites
Mite pests in Earthworm Beds
White or Brown Mites
Red Mites
Mite Prevention
Removal of Mite
Parasites and pathogens

12. EARTHWORMS: END USES AND POTENTIAL
Earthworms in Medicine
Earthworms as Feed
Economic potential
Legal constraints
Conclusion

13. EARTHWORMS: END USES AND POTENTIAL
The Future
Sampling Methods
Hand Sorting
 Principle
 Materials
 Procedure
Washing and Sieving
 Principle
 Materials
 Procedure
Use of Chemical Repellants
 Principle
 Materials
 Procedure
Electrical Methods
 Principle
 Materials
 Procedure
Trapping Methods
 Materials
 Procedure
Other Method
 Flotation
 Heat Extraction
Number of Casts
Measurement of Earthworm Biomass
Storage and Identification
Storage
Identification

14. VERMICOMPOSTING: A WORLD SCENARIO
Grace McKellar Centre, Geelong, Victoria, Australia
Hobart City Council, Tasmania, Australia
National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
Newcastle City Council, New South Wales, Australia Oregon Soil Corporation, Beaverton, Oregon, United States
Pacific Southwest Farms, Ontario, California, United States
Resource Conversion Corporation/Canyon Recycling, San Diego, California, U.S.
Rideau Regional Hospital, Perth, Ontario, Canada
San Quentin Prison, California
Seattle Kingdome Stadium, Seattle, Washington, United States Sovadec, La Voulte, France
Vermiculture Production Center, Pinar del Rio Province, Cuba Vermicycle Organics, Inc., Charlotte, North Carolina, United States
India
Green Cross Society of Mumbai, India
Indian Aluminum Co. Ltd, Belgaum, India
M.R. Morarka - GDC Rural Research Foundation, Jaipur

15. ROLE OF EARTHWORMS
In sustainable Agriculture
 Organic Farming
 Earthworms Activities
 Soil Fertility and Texture
 Soil Aeration
 Water Impercolation
Decomposition and Moisture

16. VERMITECHNOLOGY
Definition
History
In Other Countries
In India

17. ADVANTAGES OF VERMICULTURE
Production of Cheap Animal Protein
Vermi Cast
Soil and Vermi Cast
Earthworm Inoculation in Soil
Decomposition of Bio-Degradeable Wastes and Vermicomposting
Vermiculture in Pollution Abatement

18. VERMICULTURE
General and Planning
Selection of Suitable Species
Basic Characteristics of Suitable Species
Description of Suitable Species
Family: Lumbricidae
1. Bimastos parvus (= Allolobophora (Bimastosparus Eisen))
2. Eisenia fetida (Sav.)
Family: Eudrilidae
1. Eudrilus eugeniae (Kinb.)
Family: Megascolecidae
1. Lamptio mauritii (Kinb.)
2. Metaphire anomala Mich. (= Pheretima anomala)
3. Metaphire posthuma (= Pheretima posthuma)
4. Perionyx excavatus E. Perr.
5. Perionyx sansbaricus Michaelson
Family: Octochaetidae
1. Octochaetus (Octochaetoides) surnensis Mich.
2. Ramiella bishambari (Steph.)
Sub-family: Diplocardinae
1. Dichogaster bolai (Mich.)
2. Dichogaster affinis (Mich.)
3. Dichogaster curgensis (Micha.)
4. Dichogaster saliens (Bedd.)
5. Ramiella bishambari (Steph.)
6. Erythodraeodrilus suctorius (Steph.)
7. Ocnerodrilus (Ocnerodrilus) occidentails (Eisen.) Family: Moniligastriidae
1. Moniligaster perrieri (Mich.)
2. Drawida willisi (Mich.)
Maintenance of Base Culture

19. VERMICOMPOSTING
General
Advantages of Vermicomposting
Vermicomposting Materials
Preliminary Treatment of Composting Material
Small Scale or Indoor Vermicomposting
国立研究所プロジェクトコンサルティングサービス（NPCS）は、産業界で信頼できる名前で、統合されたテクニカルコンサルティングサービスを提供しています。NPCSはエンジニア、プランナー、専門家、財務専門家、経済分析家、設計専門家を含む機器と専門家をマンデートしています。関連業界の経験豊富な専門家。

私たちの様々なサービスは：詳細なプロジェクト報告書、製造プラントの事業計画、スタートアップアイデア、起業家向けビジネスアイデア、起業の起業機会、成功したビジネス計画、産業動向、市場調査、製造過程、機械、原材料、プロジェクト報告書、コストと収益、プロフィテーラブル製造ビジネスの前掲研調査、プロジェクト同定、プロジェクトの可能性と市場調査、最も高収益の製造ビジネスの機会の同定、ビジネス機会、投資機会、インドでの最も高収益のビジネスの同定、製造ビジネスのアイデア、事業計画の準備、投資前および前掲研調査、市場調査研究、技術経済調査報告書の同定とセクションの製造、プロセス、設備、一般的な指導、スタートアップの援助、技術の専門的なカウンセリングを含みます。新しい産業プロジェクトのための設立を助ける技術的かつ図形的なカウンセリングと最も高収益の小規模な事業。

NPCSは、プロセスマニピュレーション、テクニカル、リファレンス、自己雇用、スタートアップの書籍、ディレクトリ、ビジネスおよび産業データベース、基盤可能な詳細なプロジェクト報告書、市場調査報告書にて、各種産業、小規模産業、利潤をもたらすビジネス。産業技術調査機構、コンサルタント、プロジェクトコンサルティング会社の研究の一部として、製造者、産業家、起業家、専門家、情報サービス、ベンチャー、プロジェクトの同定を含みます。