Organic fertilisers derived from natural sources such as plants, animals, and microorganisms are known as biofertilizers. They are high in nutrients such as nitrogen, phosphorus, and potassium. Biofertilizers are environmentally friendly, long-lasting, and less expensive than synthetic fertilisers. Biofertilizers can be applied directly to the soil to improve fertility and crop yield. They are also used in conjunction with other organic farming practises to improve soil health, such as composting and mulching. Biofertilizers contribute to a reduction in the use of chemical fertilisers, which can pollute water sources and harm the environment. Biofertilizers improve crop quality by increasing nutrient content and improving taste, in addition to their environmental benefits. They also improve plant resistance to diseases and pests. Organic farming is a subset of agriculture that emphasizes natural methods such as composting, crop rotation, and the use of organic fertilisers and pest control. Organic farmers grow their crops without the use of synthetic fertilisers, pesticides, or genetic engineering. Instead, they rely on naturally occurring nutrients in the soil and organic matter, such as compost and manure, to provide essential nutrients and minerals to their plants. Organic farmers also use traditional farming methods that promote biodiversity, soil fertility, and water conservation. Organic farming focuses on producing food in an environmentally friendly manner while also respecting animals and nature.

The global biofertilizers market is expected to grow at a CAGR of 12.04% during the forecast, from $2.02 billion to $4.47 billion. Organic farming is one of the fastest-growing agricultural methods in the world, with 72.3 million hectares of agricultural land under organic agriculture management globally, according to the Research Institute of Organic Agriculture. The use of synthetic fertilisers contaminated the soil and killed microorganisms. Organic farming is rapidly becoming popular in order to reduce soil pollution. Organic agriculture makes the best use of local resources to improve soil fertility while avoiding agrochemicals, GMOs, and many synthetic compounds used as food additives. The growing demand for organic food motivates farmers to use bio-based fertilisers that are compatible with organic food production. Higher product appreciation and adoption among farmers in developing and developed economies are expected to positively influence the growth of the Biofertilizers Market in the coming years. Furthermore, agricultural
producers’ active participation in ramping up their biological agriculture, such as bio-origin fertilisers, is expected to boost the growth of the Biofertilizers Market in the coming years. Furthermore, the rise in food product demand and per capita income has created enormous opportunities for the growth of the Biofertilizers Market in various regions and countries around the world.

The book’s main contents are Biofertilizer, Organic Farming, Potash, Greenhouse Farming, Hydroponic Farming, Pellet Fertilizer, Seaweed Fertilizer, Biogas, Anaerobic Digesters, Biopesticides, and Organic Manure. The Manufacturing Process, Machinery Equipment Details, and Photographs with Suppliers Contact Details are also given.

A total guide to manufacturing and entrepreneurial success in today’s most demandable Biofertilizer and Organic Farming industry. This book is one-stop guide to one of the fastest growing sectors of the Biofertilizer and Organic Farming industry, where opportunities abound for manufacturers, retailers, and entrepreneurs. This is the only complete handbook on the commercial production of Biofertilizer. It serves up a feast of how-to information, from concept to purchasing equipment.

Contents

1. INTRODUCTION
 1.1 Role
 1.2 The reason for using biofertilizers
 1.3 Benefits
 1.4 Types
 1.4.1 Rhizobium
 1.4.2 Azotobacter
 1.4.3 Azospirillum
 1.4.4 Azolla
 1.4.5 Plant growth-promoting rhizobacteria (PGPR)
 1.4.6 Potassium Mobilizing Biofertilizer (KMB)
 1.4.7 Zinc Solubilizing Biofertilizer (ZSB)
 1.4.8 Phosphate Absorbers Mycorrhizaeaeaeae
 1.5 Components
 1.5.1 Symbiotic nitrogen-fixing bacteria
 1.5.2 Symbiotic nitrogen-fixing Cyanobacteria
 1.5.3 Free-living nitrogen-fixing bacteria
 1.5.4 Other Components of biofertilizers
 1.6 Compost Biofertilizers
 1.7 Methods

2. HOW TO START A BIOFERTILIZER BUSINESS
 2.1 Plan
 2.2 The growth potential of the Biofertilizer business
 2.3 Different types of fertilizers to start your fertilizer business
 2.3.1 Organic fertilizer
 2.3.2 Chemical fertilizer
 2.3.3 Biofertilizer business: Things to consider
 2.4 Starting a Biofertilizer business in India: A step-by-step guide
 2.4.1 Creating a business plan
 2.4.2 A suitable location must be selected and leased
 2.4.3 Business permit, licence, and legal documents required for organic fertilizers
 2.4.4 Supply Expertise
 2.4.5 Organize the laboratory and manufacturing facility in the house
2.4.6. Machines & Equipment
2.4.7. Refrigerator
3. TYPES OF BIOFERTILIZERS
3.1. Types of Biofertilizers
3.1.1. Bio NPK
3.1.2. Acetobacter
3.1.3. Azospirillum
3.1.4. Mycorrhiza
3.1.5. Phosphate Solubilizing Bacteria
3.1.6. Potassium Solubilizing Bacteria
3.2. Biofertilizer Applications
3.3. What is the purpose of using biofertilizers?
3.3.1. Advantages
4. BIOFERTILIZER PRODUCTION METHOD AND PROCESS
4.1. Purpose
4.2. Production
4.2.1. Strain Choice
4.2.2. Plant Pelletizing
4.2.3. Vaccinant Transporters
4.3. Quality Standards for Inoculants
4.4. Packaging
4.5. Storage
4.6. Immunization of the Field
4.7. Preparation
4.8. Production Line from Animal Wastes
4.9. Cow Dung Fertilizer Machine
4.10. Dry Cow Dung Fertilizer by Using Fertilizer Machines
4.11. Types of Cow Dung Fertilizer Machines Use for Composting
4.12. Compost Windrow Turner for Cow Manure Composting
4.15. Aims of Production
4.16. Rotary Cooler
4.17. Cooling Fertilizer Pellets
4.18. Fertilizer Dryer
4.19. What Drying Technology Does The Fertilizer Dryer Use?
4.20. Smart Rotary Drum Dryer
4.21. Drum Dryer
4.22. Fertilizer Packing Machine
4.23. Powdery Fertilisers Packing Facility
4.24. Package Organic Fertilisers
4.25. Fertilizer Mixer for Blending Plant
4.26. Hot selling double shafts horizontal cow dung mixer fertiliser equipment
4.27. Tiny Chicken Manure Fertiliser Mixer
4.28. Pan Mixer Machine
4.29. BB Fertilizer Blending Equipment for Mixed Fertilizer Granules Processing
4.30. Batch Mix Plant
4.31. Fertilizer Crusher
4.32. Vertical Crushing
4.33. Chain Crusher
4.34. Hammer Mill Crushing
4.35. Hot Semi-Wet Crusher
4.36. Cage Crush Machine
4.37. Small Straw Grinders
4.38. Urea Fertilizer Powder Grinding Machine
4.40. Organic Fertilizer Granulator
4.41. Uses of Organic Fertilizer Granulator
4.42. Raw Materials
4.43. Organic Fertilizer Using Chicken Manure
4.44. Organic Fertilizer from Food Waste
4.45. Amino Acid Organic Fertilizer
4.46. Setup an Organic Fertilizer Manufacturing Unit
4.47. Compost Machine
4.48. Use
4.48.1. Windrow & Trench
4.49. Hydraulic Organic Waste Crawler
4.50. Forklift Type Manure Compost Turner Machine
4.51. Cow Dung Compost Windrow Turner
4.52. Poultry Waste Compost Fertilizer Machine
4.53. Chain Plate Type Compost Fertilizer Making Machine
5. SIMPLIFIED ANAEROBIC DIGESTERS FOR BIOFERTILIZER
5.1. Abstract
5.2. Foreword
5.3. Batch Digester Plant
5.4. Plug Flow Digester Plant
5.5. Covered Langoon Biogas System
5.6. Continuous Expansion Digester
5.7. Tests on a Small Electric Generator set Fuelled by Biogas
5.8. An Economic Evaluation of the Plants
5.9. Conclusions
6. OPERATING CONDITIONS FOR ANAEROBIC DIGESTION OF BIOFERTILIZER
6.1. Abstract
6.2. Introduction
6.3. Design of the Experiment
6.4. Results and Discussion
6.4.1. Effect of the initial total solids (TS) concentration on
6.4.2. Effect of hydraulic retention time (0) on
6.4.3. Effect of temperature on
6.4.4. Effect of mode of operation on
7. POTASH PRODUCTION PROCESS
7.1. Comminution
7.2. Potash Flotation Process
7.3. Common Salt or Halite: NaCl
7.4. Crushing Section
7.5. Scrubbing and Desliming
7.6. Grinding and Classification
7.7. Conditioning
7.8. Potash Flotation
7.9. Thickening, Filtering and Brine Recovery
7.10. Pumping of Products
8. APPLICATION AND EVALUATION TECHNIQUES
8.1. Different Methods for Biofertilizer Inoculation
8.1.2. Seed inoculation
8.2. Top dressing of Biofertilizers
8.2.1. Granular biofertilizers
8.2.2. Solarisation of FYM/Compost
8.2.3. Granular biofertilizer mixed with seed
8.2.4. Broadcasting of granular biofertilizers
8.2.5. Frequency of inoculation
8.2.6. Liquid inoculation of Biofertilizers
8.3. Methods of application of liquid inoculation
8.3.1. Drenching by Sprayers
8.3.2. Application in root zone
8.3.3. Culture pellet
8.4. Methods of Application of Other Biofertilizers
8.4.1. Blue Green Algae
8.4.2. Azolla
8.4.3. As green manuring
8.4.4. Azolla dual cropping
8.5. Azotobacter
8.5.1. Preparation and use of Azotobacter inoculant
8.5.2. Application
8.6. Azospirillum
8.7. Mycorrhizae
8.7.1. Endomycorrhizae
8.7.2. Ectomycorrhizae
8.8. Foliar Biofertilizer
8.9. Humar
8.10. Humic Acid
8.10.1. Introdution
8.10.2. Application
8.10.3. Soil
8.10.4. Foliar
8.10.5. Seed treatment
8.10.6. Soil Benefit
8.10.7. Root
8.10.8. Seeds
8.10.9. Plants
8.10.10. Precautions
8.11. Different Media Used to Study Biofertilizer
8.11.1. Growth Media for Rhizobium
8.12. Media for Testing Nodulating Ability of Rhizobium
8.12.1. Isolation of Frankia
8.13. Media Used
8.14. Precautions in handling
9. CROP RESPONSE TO BIOFERTILIZERS
9.1. Symbiotic Nitrogen Fixation
9.1.1. Rhizobium
9.2. Azolla
9.3. Nonsymbiotic Nitrogen Fixation
9.3.1. Blue Green Algae (BGA)
9.4. Azotobacter
9.5. Azospirillum
9.6. Phosphate Solubilizers and Fixers
9.6.1. Mycorrhiza
9.7. Phosphate Solubilizing Microganisms
9.8. Factors Affecting Crop Response to Biofertilizers
9.9. Host Response to Biofertilizers
9.10. Interaction of Inoculants with other Nutrients
9.11. Multi-Microbial Inoculation
9.12. Compatability Between Biofertilizers and Chemical Fertilizers
9.13. Adaptive Trials

10. BIOGAS PRODUCTION FROM ORGANIC BIOFERTILIZER
10.1. Abstract
10.2. Introduction
10.3. Materials and Methods
10.3.1. Organic Wastes
10.3.2. Analytical procedures
10.4. Experimental
10.5. Results and Discussion
10.6. Biogas Production from Geranium Flour (GF)
10.6.1. Biogas Production from Akalona (AK)
10.6.2. Biogas Production from Watermelon Residue (WR)

11. BIOGAS FROM LIQUID BIOFERTILIZER DERIVED FROM BANANA AND COFFEE PROCESSING
11.1. Abstract
11.2. Introduction
11.3. Results

12. STEPS FOR HOW TO START ORGANIC FARMING

13. ORGANIC FARMING
13.1. Pollution Problems with Fertilizers
13.1.1. Water Pollution
13.1.2. Atmospheric pollution
13.1.3. Damage to crops and soils
13.1.4. Heavy Metal Contamination
13.2. Environment Restoration with Fertiliser
13.3. Pollution Abatement Startegies
13.4. Organic Farming
13.5. Why Organic Farming
13.6. Basic Concepts of Organic Farming
13.6.1. Integrated Plant Nutrient Supply Management (IPNSM)
13.6.2. Integrated Insect Pest and Disease Management
13.6.3. Integrated Soil and Water Management
13.7. Alternatives
13.8. Organic Manures
13.9. Plant Origin Pesticides
13.10. Biopesticides
13.11. Bioherbicides
13.12. Biofertilizers
13.12.1. Microorganisms as nutrient regulators
13.12.2. Organic Matter in Agroecosystem
13.12.3. Soil Microbial biomass
13.12.4. Nutrient Availability
13.12.5. Losses
13.13. Cultural Practies

14. METHODS AND TYPES OF ORGANIC FARMING
14.2. Characteristics
14.3. Goals of Switching to Organic Farming
14.4. Different Methods of Organic Farming
14.4.1. Crop Diversity
14.4.2. Crop Rotation
14.4.3. Biological Pest Control
14.4.4. Soil Management
14.4.5. Green Manure
14.4.6. Compost
14.4.7. Weed Management
14.4.8. Controlling Other Organisms
14.4.9. Livestock
14.4.10. Genetic Modification

15. ORGANIC MANURES
15.1. Organic Matter
15.1.1. Chemical nature of organic matter
15.2. Organic Manures
15.2.1. Organic residues
15.2.2. Cow dung manure
15.2.3. Live stock wastes
15.3. Green Manure
15.3.1. Importance of green manure
15.3.2. Green manure crops
15.3.3. Turning of green manure crops
15.3.4. Biological control of plant disease and green manure
15.3.5. Fate of green manures
15.3.6. Nutrient status
15.3.7. Compost
15.3.8. Sources
15.3.9. Methods
15.3.10. Indore method
15.3.11. Bangalore Method
15.3.12. NADEP Method
15.3.13. Role of microbes in Compost making
15.4. Vermicompost
15.4.1. Vermi composting
15.5. Phospho-Compost
15.6. Oil Cakes
15.6.1. Poultry waste compost
15.7. Organic Industrial Wastes
15.8. Materials
15.8.1. Flyash
15.8.2. Coir pith
15.8.3. Pressmud
15.8.4. Phosphogypsum
15.8.5. Sewage and sewage sludge
15.8.6. Sugar factory waste and sugarcane trash
15.9. Biomethanation
15.10. Constraints

16. BIOPESTICIDES
16.1. Discovery
16.2. Development
16.3. Registration
16.4. Biological Control of Insect
16.4.1. Fungal Insecticides
16.4.2. Bacterial Insecticides
16.4.3. Bacillus thuringiensis (BT)
16.4.4. Mode of action
16.4.5. The question of resistance
16.4.6. Commercial Prospects
16.4.7. Improvements in BT through genetic engineering
16.4.8. The BT protein and the efforts on recombinant DNA in this area
16.4.9. Limitations of BT
16.4.10. Safety
16.4.11. Viral Insecticides
16.4.12. Nuclear Polyhedrosis Virus
16.4.13. Protozon Insecticides
16.4.14. Possibilities of field application
16.5. Botanical Pesticides
16.5.1. Phaeon trap
16.5.2. Trichocards
16.6. Biological control of plant diseases
16.6.1. Soilborne diseases
16.6.2. Methods for biocontrol
16.6.3. Biological Seed Treatment
16.7. Foliar Diseases
16.7.1. Introduction
16.7.2. Selection of biocontrol agents
16.7.3. Formulation and delivery system
16.7.4. Improved efficacy
16.7.5. Commercialization
16.8. Nematodes as Biological Control Agents
16.8.1. Production and Formulation
16.9. Biological Control of Nematodes
16.10. Biological Control of Weeds
16.11. Role of Genetic Engineering
17. SUSTAINABLE AGRICULTURE
17.1. Definition
17.2. Dimensions
17.2.1. Perceptions
17.3. Components
17.3.1. Crop Diversification
17.3.2. Crop Rotation
17.3.3. Biological Nitrogen Fixation
17.3.4. Mixed Cropping
17.3.5. Soil Micorbes on Crops
17.3.6. Genetic Diversity
17.3.7. Integrated Nutrient Management (INM)
17.3.8. Integrated Pest Management (IPM)
17.3.9. Sustainable Water Management
17.3.10. Post Harvest Technology
17.3.11. Extension Programmes
17.3.12. Sustainable Agriculture for India
17.3.13. Role of biotechnology
17.3.14. Government support to farmers
17.4. Conclusion
18. GREENHOUSE CULTIVATION
18.1. Designs and classification of greenhouse
18.2. Classifications
18.3. Poly House
18.4. Shade House
18.5. Orientation of greenhouse / polyhouse
18.5.1. Design
18.5.2. Orientation
18.5.3. Wind Effects
18.5.4. Size of the greenhouse
18.5.5. Spacing between greenhouses
18.5.6. Height of greenhouse
18.5.7. Structural Design
18.5.8. Components
18.5.9. Cladding Material
18.5.10. Plant Growing Structures
18.5.11. Environmental Factors Influencing Greenhouse Cultivation
18.5.12. Natural Ventilation
18.6. Heating of greenhouse
18.6.1. Heating Systems
18.6.2. Boiler
18.6.3. Unit Heaters
18.6.4. Infra-Red Heaters
18.6.5. Solar Heating
18.7. Environmental Control
18.7.1. Temperature Control
18.7.2. Relative Humidity Control
18.7.3. Light Intensity Control
18.7.4. Quality of Light
18.8. Fan and Pad
18.8.1. Selection of Fan
18.9. Media Preparation and Fumigation
18.9.1. Getting the media ready for greenhouse production
18.9.2. Gravel Culture
18.9.3. Media Ingredients and Mix
18.9.4. Pasteurization of Greenhouse Plant Growing Media
18.9.5. Fungicides and their effect on a few fungi
18.9.6. Temperature necessary to kill soil pests
18.10. Fumigation in Greenhouse
18.11. Drip Irrigation and Fertigation Systems in Greenhouse Cultivation
18.11.1. Watering System
18.11.2. Fertigation System
18.11.3. Fertilizers
18.12. Forms of Inorganic Fertilizers
18.12.1. Slow Release Fertilizer
18.12.3. Liquid Fertilizer
18.13. Fertilizer Application Methods
18.13.1. Constant Feed
18.13.2. Intermittent Application
18.14. Fertilizer Injectors
18.14.1. Multiple Injectors
18.14.2. Fertilizer Injectors
18.15. General Fertigation Issues
18.16. Problem-Solving
18.17. Inadequacies in fertilizers
18.18. Aluminum Surplus
18.19. Corrective Actions for Excessive Fertiliser
18.20. Harm Caused by Poisonous Gases
18.21. Unique Horticulture Techniques
18.22. Postharvest Handling Practices for Important Cut Flowers

19. GREENHOUSE FARMING
19.1. Introduction
19.2. The various greenhouse kinds
19.3. Advantages
19.4. Types
19.4.1. Greenhouse Conventional Freestanding
19.4.2. Hoop House/High Tunnel
19.4.3. Greenhouse Lean-to or Attached
19.4.4. Cold Frames/Cold House
19.5. Advantages of Greenhouse Agriculture
19.6. Plants That Can Grow in a Greenhouse
19.6.1. Sweet Corn
19.6.2. Cucumbers
19.6.3. Baby Carrots
19.6.4. Pumpkins
19.6.5. Spinach
19.6.6. Tomatoes
19.6.7. Herbs
19.6.8. Garlic
19.6.9. String beans
19.6.10. Squash

20. GREENHOUSES CONSTRUCTION
20.1. Earthmoving and Level Surface
20.2. Set Out and Preparation of the Foundation
20.3. Reception of Materials. Preassembly at Work
20.4. Assembly of the Greenhouse

21. HOW TO START A HYDROPONIC FARM BUSINESS
21.1. Step 1: Create a Business Plan
21.1.1. What recurring costs are there for a hydroponic agricultural operation?
21.1.2. Who is the intended audience?
21.1.3. How can a hydroponic farm operation generate revenue?
21.1.4. How much can charge customers?
21.1.5. How much money can a hydroponic farm operation bring in?
21.1.6. How can increase the profitability of company?
21.1.7. What will the name of company be?
21.2. Step 2: Form a Legal Entity
21.3. Step 3: Register for Taxes
21.3.1. Taxes for small businesses
21.4. Step 4: Open a Business Bank Account & Credit Card
21.5. Step 5: Set Up Business Accounting
21.6. Step 6: Obtain Necessary Permits and Licenses
21.6.1. Requirements for Federal Business Licenses
21.6.2. Requirements for State and Local Business Licensing
21.6.3. The Occupancy Permit
21.6.4. Food Regulations
21.7. Step 7: Get Business Insurance
21.8. Step 8: Define Brand
21.8.1. How to market and advertise a hydroponic farm operation
21.8.2. How to get new clients?
21.9. Step 9: Create Business Website
21.10. Step 10: Set Up Business Phone System
22. HYDROPONIC FARMING
22.1. Benefits
22.2. Similarity with Greenhouse Gardening
22.3. Advantages
22.4. Types
22.4.1. Aerated Nutrient Standing Solution
22.4.2. Outer Structure
22.4.3. Growing Method
22.4.4. System for Regulating Irrigation and Temperature
22.4.5. Hydroponic Equipment Installation
22.4.6. Provide Instruction for Mastering the Hydroponic Technique
22.5. A Hydroponics System: How Does It Operate?
22.5.1. Soilless Gardening
22.5.2. Components
22.5.3. Rich Nutrients
22.5.4. Freshwater
22.5.5. Light
22.5.6. Oxygen
22.5.7. Root Support
22.5.8. Future Scope of This Technology
23. HYDROPONIC FARMING EQUIPMENTS
23.1. Water Pumps
23.2. Air Pumps and Air Stones for Hydroponics Systems
23.3. Water Heaters and Chillers
23.4. Hydroponic Reservoirs, Trays and Flood Tables
23.5. Reservoir Considerations
23.6. Reservoir Use in Various Hydroponic Systems
23.7. Ebb and Flow (Flood and Drain)
23.8. Hydroponic Lighting System Basics
23.9. Grow Room Ventilation
23.10. Climate Control
23.11. Indoor Grow Tents
23.12. Additional Components
24. PELLET FERTILIZER MANUFACTURING PROCESS
24.2. Mixing
24.3. Pelleting
24.4. Cooling
24.5. Sifting
24.6. Bagging
25. SEAWeed FERTILISER
25.1. Nomenclature and Taxonomy
25.2. Production and Application Methods
25.3. Nutrient Cycling
25.4. Coastal Eutrophication
25.5. Bio-Remediation in Eutrophic Ecosystems
25.6. Blue Carbon
25.7. Functions and Benefits of Seaweed Fertilizer
25.7.1. Fertilization
25.7.2. Soil Conditioning
25.7.3. Bio-Remediation of Polluted Soils
25.7.4. Integrated Pest Management
25.7.5. Soil Microbial Response to Seaweed Fertilizer Treatment
25.7.6. Resistance to Plant Pathogens
26. SEAWEED FERTILIZER PRODUCTION PROCESS
26.1. Seaweed Extract as Fertiliser
26.2. Sesweed Fertilizer Fermentation Vessel
26.3. Principle of Fermentation Equipment
26.4. Ingredients of Seaweed Fertilizer
26.5. Uses
26.6. Process
26.7. Features
26.8. Advantages of Seaweed Processing Plant
26.9. The way heat pump drying equipment operates
27. BIS SPECIFICATIONS
28. ISO STANDARDS
29. CHINA STANDARDS
30. PHOTOGRAPHS OF PLANT AND MACHINERY WITH SUPPLIERS CONTACT DETAILS
 • Biofertilizer Packing Filling Machine
 • Biofertilizer Fermenter
 • Bioreactor Machine
 • Bio Fertilizer Packaging Machine
 • Liquid Bio Fertilizer Plant
 • Waste Shredder
 • Organic Waste Converter
 • HP Steam Sterilizer Horizontal Autoclave
 • Fertilizer Cleaner
 • Fertilizer Pan Mixer
 • Fertilizer Granule Making Machine
 • Biofertilizer Granulator
 • Blender Machine
 • Pulverizer Mills
 • Pesticide Making Machine
 • Pellet Making Machine
 • Fluid Bed Gasifier for Thermal & Electrical
 • Compost Machine
 • Bucket Elevator
 • Steel Jacketed Tank
 • Storage Tank
 • Ultra Filtration System
 • Water Soften Plant
 • Tray Dryer
 • Ribbon Mixer
 • Air Compressor
31. FACTORY LAYOUT AND PROCESS FLOW CHART & DIAGRAM
 • Biofertilizer Production Layout
 • Biofertilizer Production Layout
 • Organic Fertilizer Plant
 • Biofertilizer Production Layout
 • Organic Fertilizer Production
 • Process of Production of Bio-Fertilizer
 • Experimental Process for Biofertilizer
 • Biofertilizer Quality Control
NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs are often faced with the dilemma of zeroing in on a suitable product/line.