Printing is a process for reproducing text and image, typically with ink on paper using a printing press. It is often carried out as a large-scale industrial process, and is an essential part of publishing and transaction printing. Printing technology market is growing, due to technological proliferation along with increasing applications of commercial printing across end users.

In India, the market for printing technology is at its nascent stage; however offers huge growth opportunities in the coming years. The major factors boosting the growth of offset printing press market are the growth of packaging industry across the globe, increasing demand in graphic applications, the wide range of application in various industry, and industrialization. The offset printing press market is projected to register healthy growth due to new and advanced technologies are driving the introduction of new product lined of offset printing press from large and medium manufacturers which responsible to register high productivity of offset printing press, and offers better user experience to the end-users and also reduce operational costs.

This book is dedicated to the Printing Industry. In this book, the details of printing methods and applications are given. The book throws light on the materials required for the same and the various processes involved. This popular book has been organized to provide readers with a firmer grasp of how printing technologies are revolutionizing the industry.

The major content of the book are the beginning of printing, the printing industry, sheet-fed offset printing, printing processing, offset press, modern printing process, pad printing application, gravure printing, web offset printing, the flexographic printing, security printing, process flow diagrams, layouts and photographs of machinery with supplier’s contact details.

A total guide to manufacturing and entrepreneurial success in one of today's most printing industry. This book is one-stop guide to one of the fastest growing sectors of the printing industry, where opportunities abound for manufacturers, retailers, and entrepreneurs. This is the only complete handbook on the commercial production of printing products. It serves up a feast of how-to information, from concept to purchasing equipment.

Contents
Contents

1. INTRODUCTION
 1.1 History of Printing
 1.1.1 Invention of Movable Type
 1.1.2 Lithography
 1.1.3 Offset Printing
 1.1.4 Intaglio
 1.1.5 Gravure
 1.1.6 Flexography
 1.1.7 Screen Printing
 1.1.8 Digital Printing
 1.1.9 Hybrid Printing
 1.2 Uses and Applications of Printing
 1.3 Types of Printing
 1.3.1 Offset Lithography
 1.3.2 Digital Printing
 1.3.3 Flexography
 1.3.4 Gravure Printing
 1.3.5 Screen Printing
 1.3.6 Letterpress Printing
 1.3.7 Thermal Printing
 1.3.8 3D Printing
 1.4 Structure of the Printing Industry
 1.4.1 Pre-Media
 1.4.2 Prepress
 1.4.3 Press (Printing)
 1.4.4 Postpress/Finishing

2. HOW TO START PRINTING BUSINESS

3. PLANT LAYOUT DESCRIPTION OF PRINTING BUSINESS

4. GRAVURE PRINTING
 4.1 History of Gravure Printing
 4.2 Principles of Gravure Printing Process
 4.2.1 Intaglio/Gravure Method
 4.3 Advantages of Gravure
 4.4 Limitations of Gravure
 4.5 Characteristics
 4.6 Main Sections of Gravure Printing Machine
 4.6.1 Unwind Section
 4.6.2 Printing Section
 4.6.3 Drying Section
 4.6.4 Rewind Section
 4.7 Gravure Image Carrier Preparation
 4.7.1 Hand Engraving and Printing
 4.7.2 Gravure Image Carriers
 4.7.3 Manufacturer of Gravure Cylinders
 4.7.4 Gravure Cylinder Imaging
 4.7.5 Gravure Engraving
 4.8 Gravure Cylinder Preparation Methods
 4.8.1 Preparing of Gravure Cylinder by Conventional
 Method or Carbon Tissue Method
 4.8.2 Electronic/Electromechanical Engraving of Gravure Cylinders
 4.8.3 Laser Engraving/Laser Cutting Process
4.9 Structure of Gravure Cylinder
 4.9.1 Gravure Cylinder
 4.9.2 Gravure Cylinder Components
 4.9.3 Copper Plating and Polishing
 4.9.4 Reusing the Cylinders
 4.9.5 Ballard Shell Cylinders
4.10 Gravure Drying System
 4.10.1 Gravure Drying Chamber
 4.10.2 Gravure Solvent Recovery System
 4.10.3 Higher LEVs due to Solvent Recovery
 4.10.4 Other Environmental-Friendly Solvent Removal/Reduction Systems Incineration (Thermal Oxidation)
4.11 Doctor Blade – Structure, Types, Mechanism
 4.11.1 Doctor Blade
 4.11.2 Structure and Mechanism of Gravure Doctor Blade
 4.11.3 Types of Doctor Blade
4.12 Impression Roller - Structure, Types, Mechanisms
 4.12.1 Structure and Mechanism of Gravure Impression Roller
 4.12.2 Types of Gravure Impression Roller
4.13 Gravure Presses
 4.13.1 Press Configurations for Packaging
 4.13.2 Gravure Label Presses
 4.13.3 Gravure Publication Presses
4.14 Solvent Based Inks, Water Based Inks, UV and EB Inks
 4.14.1 Gravure Solvent Based Inks
 4.14.2 Gravure Water-Based Inks
 4.14.3 Gravure UV Curing Inks
 4.14.4 EB-Curing Inks and Coatings
5. SCREEN PRINTING
 5.1 History of Screen-Printing
 5.2 Principles of Screen Printing Process
 5.3 Procedure for Screen Printing
 5.4 The Screen Printing Process Offers Several Advantages
 5.5 Applications of Screen Printing
 5.5.1 Screen Printing on Flat Surfaces
 5.5.2 Screen Printing on Curved Surfaces
 5.6 Main Sections of a Flatbed Screen Printing Machine
 5.6.1 Frame
 5.6.2 Base
 5.6.3 Screen Fabric
 5.6.4 Squeegee
 5.7 Image Carriers Used for Screen Printing
 5.7.1 Negative and Constructive Creation
 5.7.2 Making a Screen Frame
 5.8 Various Methods of Preparing Image Carriers for Screen Printing
 5.8.1 Preparing the Screen by Knife-Cut Stencil Method
 5.9 Photographic Methods of Making Screen Image Carriers
 5.9.1 Preparing the Screen by Gelatine Process (“Direct” Method)
 5.9.2 Screen Making By Photo Sensitive Films (5-Star Film) Method (Indirect or Transfer Method)
 5.9.3 Chromaline Film Method of Screen Making (Direct/Indirect Method)
 5.10 Mesh Selection
5.10.1 Mesh (Woven Screen Printing Fabric)
5.10.2 Materials Used for Screen Printing Fabrics
5.11 The Squeegee
5.12 Squeegee Selection
5.12.1 Shapes of Squeegee Blades
5.12.2 Squeegee Hardness
5.12.3 Squeegee Materials
5.13 Screen Pretreatment
5.14 Screen Stretching/Tensioning
5.14.1 Basic Steps in Screen Stretching/Tensioning
5.15 Stretching the Screen Printing Fabric
5.15.1 Manual Stretching
5.15.2 Machine Stretching
5.16 Types of Screen Printing Machines
5.16.1 Container Printing Machines
5.16.2 The Flatbed Hinged Frame Press
5.16.3 Automatic Flatbed Hinged Frame Screen Presses
5.16.4 The Rotary Screen Press
5.16.5 Carousel Machines
5.17 Screen Printing Inks
5.17.1 Components of Inks and Ink Systems
5.18 Screen Printing Ink Types
5.18.1 Decalcomanias Inks
5.18.2 Circuit Board Inks
5.18.3 Inks for Posters
5.18.4 Metallic Enamel Inks
5.18.5 Paints for Polymers
5.18.6 Glass Inks
5.18.7 Textiles and Garments: Plastisols and Emulsions
5.19 Control of Screen Printing Ink Quality
5.19.1 Appropriate Quality Control Tests for Screen Printing Inks
5.20 Typical Screen Printing Equipment
5.20.1 Printer and Films
5.20.2 Mesh Screen
5.20.3 The Inks
5.20.4 Squeegees
5.20.5 Printing Press
5.20.6 Belt Dryer
5.21 Silk Screen Printing Process
5.21.1 Design Drafting
5.21.2 Choose and Prepare the Mesh Screen
5.21.3 Expose the Emulsion Paint to Light Source
5.21.4 Prepare the Stencil
5.21.5 Prepare for Screen Printing
5.21.6 Print the Design
5.21.7 Heat-Cure and Finish the Print
5.22 Types of Screen Printing Process
5.22.1 Grayscale Printing
5.22.2 Spot-Color Printing
5.22.3 CMYK (4-Color Printing)
5.22.4 Duotone Printing
5.22.5 Half-Tone Printing
5.22.6 Simulated Process Printing
6. FLEXOGRAPHIC PRINTING
6.1 History
6.2 Benefits and Drawbacks of Flexographic Printing
6.2.1 Benefits of Printing in Flexographic Form
6.2.2 The Drawbacks of Printing Flexographically
6.3 Various Substrates That Flexography Can Print On
6.3.1 Plastic Film
6.3.2 Foil
6.3.3 Corrugated Board
6.4 A Vast Variety of Inks for Flexography Use
6.4.1 Water-Based
6.4.2 Solvent-Based
6.4.3 Energy-Curable (UV & EB-Based)
6.5 Mainstream Types of Flexographic Printing Press
6.5.1 Stack Press
6.5.2 Central Impression (CI) Press
6.5.3 In-Line Press
6.5.4 Wide-Web Press (Substrates of 21-80 Inches)
6.5.5 Narrow-Web Press (Substrates’ Length d’ 20 Inches)
6.6 The Fundamentals of Flexography the Process of Printing
6.6.1 Flexographic Printing Process
6.6.2 Main Sections of Flexography Printing Machines (Presses)
6.7 All Flexographic Presses are made up of Four Basic Sections Typically Mounted in Succession Between Sturdy side Frames
6.7.1 Unwind Section
6.7.2 Printing Section
6.7.3 Drying Section
6.7.4 Rewind Section
6.8 Flexographic Image Carrier Preparation
6.8.1 Flexographic Plate
6.8.2 Structure of Flexographic Plate
6.9 Plate Preparation Methods
6.9.1 Rubber Plates Preparation
6.9.2 Photopolymer Flexographic Plates
6.9.3 Laser Engraving
6.10 Types of Flexo Inking Systems
6.10.1 Two-Roll Ink Metering System
6.10.2 Modified Two-Roll with a Doctor Blade Ink Metering System
6.10.3 Reverse Angle Doctor Blade Ink Metering System
6.10.4 Chambered Doctor Blade Ink Metering System
6.11 Types of Anilox Cells and Cleaning Systems
6.11.1 The Anilox Roll
6.11.2 Anilox Roll Specifications
6.12 Types of Anilox Roll Based on Cell Shapes
6.12.1 Inverted Pyramid
6.12.2 Quadrangular Cell
6.12.3 Trihelical Cell
6.13 Types of Anilox Rolls Based on Roller Surfaces
6.13.1 Laser-Engraved Ceramic Anilox Rolls
6.13.2 Conventional (Or) Mechanically Engraved Chrome Anilox Rolls
6.14 Types of Anilox Roll Cleaning Systems
6.14.1 Roll Cleaning System
6.14.2 Jet Wash Type System
6.14.3 Powder Blasting System
6.14.4 Polymer Bead Blasting System
6.14.5 Dry Ice System
6.14.6 Laser Cleaning System
6.14.7 Ultrasonics
6.14.8 Alpha Sound
6.15 Types of Flexo Plate Cylinders

7. 3D PRINTING
7.1 Types of 3D Printing
7.1.1 Binder Jetting
7.1.2 Direct Energy Deposition
7.1.3 Material Extrusion
7.1.4 Material Jetting
7.1.5 Powder Bed Fusion
7.1.6 Sheet Lamination
7.1.7 VAT Photopolymerization
7.2 Different Types of 3D Printing Technologies and Their Applications
7.3 An STL File: What is it?
7.4 3D Printing Process
7.4.1 3D Modelling
7.4.2 Saving the 3D Model
7.4.3 Preparing the 3D Model for Printing
7.4.4 Checking and Saving the Print File
7.4.5 3D Printing
7.4.6 Post-Processing
7.5 How 3D Printing Works?
7.6 Key Industries Leveraging 3D Printing
7.6.1 Applications in Medicine and Dentistry
7.6.2 Defense and Aerospace
7.6.3 The Automobile Industry
7.6.4 Personal and Consumer Products
7.6.5 Aeronautics and Space Travel
7.6.6 Customized Apparel and Style
7.6.7 Culinary Arts and Food

8. DIGITAL PRINTING
8.1 Types of Digital Printing
8.2 Digital Print Media and Products
8.3 Benefits of Digital Printing
8.4 Digital Printing Process
8.5 Which Type of Machinery is used in Digital Printing?
8.5.1 Prepress Stage Machinery
8.5.2 Essential Machinery for the Printing Stage
8.6 The Role of Pile Turners in Digital Printing
8.7 Digital Printing in Packaging and Labels
8.7.1 Label Presses and Corrugated Packaging Printers
8.7.2 Colour Label Presses
8.7.3 Corrugated Printers

9. ULTRA VIOLET (UV) PRINTING
9.1 Benefits of UV Printing
9.2 History of UV Printing Process
9.3 Which Materials are Suitable for UV Printing?
9.4 Which Parts Make up a UV Printing Machine’s Core?
9.4.1 Printheads
9.4.2 PCB (Printed Circuit Board)
9.4.3 Curing Light
9.4.4 Machine Body
9.4.5 Guide Rail
9.4.6 The Process of Printing in Ultra-Violet (UV)
9.4.7 LED UV Printing
9.5 The UV Printing Process
10. OFFSET PRINTING TECHNOLOGY
10.1 The Offset Lithographic Process’s Past
10.2 Lithography and Offset Printing Fundamentals
10.3 The Offset Printing Principle
10.4 Configuration and Structure of Sheetfed Offset Press
10.4.1 Single Color Offset Press
10.4.2 Multi-Color Sheet-Fed Presses
10.4.3 Convertible Press
10.5 Types of Sheetfed Offset Press
10.5.1 Inline Press
10.5.2 Stack Type Press
10.5.3 Blanket to Blanket Press
10.5.4 Common Impression Cylinder Presses
10.6 Sheet Control and Delivery in Offset Press
10.7 Types of Automatic Feeder
10.7.1 Single Sheet Feeder or Successive Sheet Feeder
10.7.2 Stream Feeder
10.8 Feeder Head Components
10.9 Sheet Registering Devices
10.10 Early Sheet Detectors (or) Electromechanical Type
10.11 Sheet Insertion Devices
10.12 Delivery Section
10.13 Offset Press Printing Unit
10.13.1 Establishing a Sheetfed Printing Press
10.14 Types of Blankets
10.14.1 Conventional Blanket (or) Non-Compressible Blankets
10.14.2 Compressible Blankets
10.15 Construction of Inking System
10.15.1 Roller Setting
10.15.2 Roller the Distance Between the Plate and the form Roller
10.15.3 Setting Form Roller to Oscillator
10.16 Ink System Issues
10.17 Dampening System
10.17.1 Construction of Dampening System
10.17.2 Composition of Dampening Solution
10.17.3 Dampening Solution pH
10.17.4 Conductivity of the Dampening Solution
10.17.5 Dampening System Roller Setting
10.17.6 Conventional Dampening System
10.17.7 Continuous Dampening System
10.17.8 Dahlgren Dampening System
11. TEXTILE PRINTING
11.1 Textile Printing’s Historical Background
11.2 Printing Method
11.2.1 Block Printing
11.2.2 Screen Printing
11.2.3 Engraved Roller Printing
11.2.4 Transfer Printing
11.2.5 Stencilling
11.2.6 Digital Printing
11.2.7 Rotary Screen Printing
11.2.8 Direct Printing
11.2.9 Discharge Printing
11.2.10 Resist Printing
11.2.11 Ink-Jet Printing
11.2.12 Heat-Transfer Printing
11.3 Early Textile Printing Methods
11.4 Comparison Between Dyeing and Printing
11.5 Enter Digital Direct Reactive Textile Printing
11.6 Wet Printing Techniques
11.6.1 Preparation of the Print Paste
11.6.2 Printing the Fabric
11.6.3 Drying the Printed Fabric
11.6.4 Fixation of the Printed Dye or Pigment
11.6.5 Afterwashing
11.7 Printing Methods
11.7.1 Flat-Bed Screen Printing
11.7.2 Rotary Screen Printing
11.7.3 Screen Engraving
11.7.4 Laser Engraving
11.7.5 Engraved Roller Printing
11.7.6 Heat Transfer Printing
11.7.7 Digital Ink-Jet Printing
12. CTP (COMPUTER TO PLATE)
12.1 What is a CTP Machine?
12.2 Technology
12.3 Computer-to-Plate Advantage
12.4 Computer to Plate versus Computer to Film
12.5 CTP Method
12.5.1 Internal Drum Imagesetters
12.5.2 External Drum Imagesetters
12.5.3 Flat-Bed Imagesetters
12.6 Types of CTP-Plates (Computer-to-Plate)
12.6.1 Photopolymer Plates
12.6.2 Silverhalogen Plates
12.6.3 Thermal Plates
12.7 Advantages of CTP vs. CTF
12.8 Disadvantages of CTP vs. CTF
12.9 CTP Process
12.9.1 Digital File Preparation
12.9.2 Computer-to-Plate Imaging
12.9.3 Plate Development
12.9.4 Mounting on the Printing Press
12.9.5 Printing
12.10 What Types Of CTP Plates
12.10.1 Silver Salt Diffusion Transfer Type
12.10.2 The Polymer Compound Type
12.10.3 Silver Salt Emulsion and Polymer Compound Composite Type
12.10.4 Spray Mask Type
12.10.5 Thermal Type
12.11 The Definition of Thermal CTP Technology
12.11.1 Classification of Thermal CTP technology
13. PAD PRINTING
13.1 Description of Parts
13.2 The History of Pad Printing
13.3 Pros and Cons of Pad Printing
13.4 Limitations of Pad Printing
13.5 How to Pad Print?
13.6 Basic Components of Pad Printers
13.6.1 Pad Printer
13.6.2 Pad Print Ink Cup
13.6.3 Pad Print Ink
13.6.4 Printing Pad
13.6.5 Pad Printing Plate
13.7 Pad Printing Vs. Screen Printing: What’re The Differences?
13.8 Which Industry Applications Print With Pad Printing?
13.9 Factors to Consider During Pad Printing
14. WEB OFFSET PRINTING
14.1 Design of Web Machines
14.2 Reel Stand Unit
14.3 Web Control Unit
14.4 Printing Units
14.5 Main Parts of Printing Unit
14.6 Delivery Operations
14.7 Ancillary Operations by Delivery Unit
14.8 Colour and Its Reproduction
14.9 Classification of Colours
14.9.1 Primary Colours
14.9.2 Secondary Colours
14.9.3 Tertiary Colours
14.9.4 Influence of Colours
14.10 Terminology Related to Colour
14.11 Quality Control in Printing
14.12 During Printing
14.13 After Printing
15. SECURITY PRINTING
15.1 Credit Cards
15.2 Caliper and Dimensions
15.3 Hologram
15.4 Hologram Types
15.5 Uses
15.6 Numbering with Micr Ink on Rotary Presses
15.6.1 Ink Agitation
15.6.2 Heat Fountains
15.6.3 Distribution of Ink
15.6.4 Form Rollers and Impression Cylinders
15.6.5 Cam Setting
15.6.6 Setting form Rollers
15.6.7 Impression Cylinders
15.6.8 Setting Impression
15.6.9 Speeds
15.7 Methods in Security Printing
15.7.1 Substrates in Security Printing
15.7.2 Security Inks
15.7.3 RFID Hidden Security Features
15.7.4 RFID Tag Categories
15.7.5 RFID Tag Shapes and Sizes
15.7.6 Printing
15.8 Prospective Developments in RFID Tags and Security Printing

16. HIGH SECURITY PRINTING FOR BANKNOTE
16.1 Specialized Substrates
16.2 Intaglio Printing
16.3 Watermarks
16.4 Security Inks
16.5 Holograms and Kinegrams
16.6 Microprinting
16.7 See-through Registers
16.8 Serial Numbers
16.9 UV Features
16.10 Digital Authentication

17. SECURITY PRINTING FOR TAX LABELS, AND OTHER SECURITIES
17.1 Specialized Inks and Dyes
17.2 Substrate Security
17.3 Intaglio Printing
17.4 Microprinting
17.5 Holograms and Foils
17.6 Guilloche Patterns
17.7 Serial Numbers and Barcodes
17.8 Digital Authentication
17.9 Implementation Considerations

18. BIS STANDARDS

19. PLANT LAYOUT, PROCESS FLOW CHART & DIAGRAM

20. PHOTOGRAPHS OF PLANT AND MACHINERY WITH SUPPLIERS CONTACT DETAILS
 • Rotary Screen Printing Machine
 • Flexographic Roll to Roll Printing Machine
 • High Speed Flexo Printing Machine
 • 3 Color Satellite Unit RottaSpeed Web Offset Machine
 • Offset Printing Machine
 • Pad Printing Machine
 • Automatic Heat Press
 • Black and White Digital Print Production System
 • Flexographic Printing Machine
 • Fully Automatic Printing Head
 • Single Colour Electro Pneumatic Pad Printing Machine
 • Manual Pad Printing Machines
 • Label Printing Press
 • Offset Machines
 • Automatic Heat Transfer Machine
 • Semi-Automatic Screen Printing Machine
 • Flatbed Screen Printing Machine
 • Multi Cage Screen Stretching Machine
 • Digital LED UV Flatbed Printing Machine
About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs are often faced with the dilemma of zeroing in on a suitable product/line.

NIIR PROJECT CONSULTANCY SERVICES, 106-E, Kamla Nagar, New Delhi-110007, India. Email: npcs.india@gmail.com Website: NIIR.org