Textile manufacturing is a major industry, it is based in the conversion of three types of fibre into yarn, then fabric, then textiles. These are then fabricated into clothes or other artefacts. Cotton remains the most important natural fibre, so is treated in depth. There are many variable processes available at the weaving and fabric forming stages coupled with the complexities of the finishing and colouration processes to the production of wide ranges of products. Certain other fiber properties increase its value and desirability in its intended end use but are not necessary properties essential to make a textile fiber. Such secondary properties include moisture absorption characteristics, fiber resiliency, abrasion resistance, density, luster, chemical resistance, thermal characteristics, and flammability. Some primary properties of textile fibers are: fiber length to width ratio, fiber uniformity, fiber strength and flexibility, fiber extensibility and elasticity, and fiber cohesiveness. Some, mostly larger, firms operate in the organized sector where firms must comply with numerous government labour and tax regulations. Most firms, however, operate in the small scale unorganized sector where regulations are less stringent and more easily evaded. The textile industry occupies a unique place in our country. One of the earliest to come into existence in India, it accounts for 14% of the total Industrial production, contributes to nearly 20% of the total exports. Being the largest foreign exchange earner, it accounts for more than 5 per cent of GDP.

This book majorly deals with characteristics of cotton textile processing, characteristics of effluents, characteristics and treatment of synthetic, textiles processing effluents, processes, volume and characteristics of effluents, treatment, the properties of textile fibres, important properties of fibres, basic aspects of textile fibres etc.

The book covers complete details of textile processing with the standard parameters of effluents treatment which is the burning problem for the textile processors. Needless to say that this book will be of immense use to textile processors, consultants and chemists engaged in water and waste water treatment, research institutions etc.

Contents

1. Characteristics of Cotton Textile Processing
 Characteristics of Effluents
 Sizing (Slashing)
 Desizing
 Scouring
 Bleaching
 Mercerizing
Dyeing
Printing
Final Finishing
Combined Effluent
Treatment
Desizing
Scouring
Bleaching
Mercerizing
Dyeing
Printing
Combined Effluent
Primary Treatment
Secondary Treatment
Tertiary Treatment
2. Characteristics and Treatment of Synthetic Textiles Processing Effluents
Processes, Volume and Characteristics of Effluents Treatment
3. Characteristics and Treatment of Woollen Textile Processing Effluents
Processes, Sources and Characteristics of Effluents
Raw Wool Scouring
Weaving & Finishing Operations
Characteristics of Scouring Effluents
Characteristics of Effluents from Weaving & Finishing Operations
Effects of Effluents
Treatment of Wool Processing Effluents
Primary Treatment
Secondary Treatment
Tertiary Treatment
Recovery of Valuable Materials from Woollen Processing Effluent
4. Color Removal
5. Recovery and Reuse of waste Water
6. Conservation and Reuse of Water
7. Melt Spinning
Associated Apparatus
Spinneret Assembly producing Plug Flow
Multifilamentary Yarns of Uniform Quality
Filament Manufacturing Device of Small Height
Filaments and Fibers Having Discontinuous Cavities
Spinning Pack Filter
Polyesters
Highly Oriented Undrawn Yarn
Multifunctional Chain Branches
Transfer System Between Melt Source and Spinning Position
Enhanced Dyeability and Thermal Stability by
High Speed Spinning
Deep-Dyeing Textured Yarn Spun at High Speed
High Speed Production of Preoriented Yarn
Vinyl Copolymer to Reduce Pilling
Anti-Pilling Filaments with High Tenacity and Low Knot Tenacity
Low carboxyl Polyester Fibers Using Alkali Metal salt as catalyst
Antistatic Polyether-Polyester Block Copolymer Process for Textured Yarn C-Shaped Filaments
Improved Hot/Wet Properties
Flame-Retardant Acrylics
Modacryl Filaments with Permanent Brilliance and Transparence
Cellulose and Starch
Rayon Fibers Containing Starch
Continuous Process for Viscose Yarn
Water-Insensitive Starch Fibers
Polyamides and Other Nitrogen-containing Polymers
Production Arylamides with Recovery of Amide Solvent
Air Gage Arylamide Spinning Process
Reduced Salt Content in Arylamide Fibers
Neutralization of Polyamide Spin Dope
Fibers from Anisotropic Dopes of Aromatic Polymers
Arylene Oxadiazole/Arylene N-Alkylhydrazide
Copolymer Fibers
Aromatic Oxadizole Polymers and Copolymers
Vinyls
Recovery and Recycle of Salt Solution in Vinyl Polymer Spinning
Lithium Halides as Solvents for Polyhydroxymethylene
10. Computers in Textile Manufacturing
Computer - Aided Design (CAD) systems
Computer - aided manufacturing
Computer - aided design
Computer - aided process planning
Mechatronics and information engineering
Computer - Aided Logistic Support (CALS)
Development of LAN system
Network controller
11. The Properties of Textile Fibres
Important properties of fibres
Fibre shape and strength of yarns
Fibre extensibility
Softness
Plasticity and thermoplasticity
Lustre
Fibre density
Solubility in various solvents
Affinity for dyes
Fibre structure
The special properties of synthetic fibres
12. Basic Aspects of Textile Fibres
Filament and staple
Yarn
Fabrics
Woven fabrics
Knitted fabrics
Lace and net fabrics
Braided fabrics
Felt fabrics
Bonded fibre fabrics
Textile mills
Woven textile fabrics
Cotton
Wool
Silk
Rayon
Acetate
Nylon
Vinyon
Mohair
Linen
Glass fibres
Dacron
Orlon
Vicara
Yarns for weaving

13. Structure and Properties of Textile Fibres
Fibre structure
Properties of synthetic fibres

14. Textile Weaving
Plain Weave
Twill Weaves
Effect and flush
Satin Weaves
Basket and rib weaves
Weave Combinations
Face and back of fibres
Knitted Fabrics
Colouring
Braiding
Lace
Nonwoven fabrics
Bonded Fabrics
Automatic weaving machine
3-D weaving processes

15. Textile Wet Processes
Cotton Textiles
Sizing (Slashing)
Desizing
Scouring
Bleaching
Mercerizing
Dyeing
Printing
Finishing
Synthetic Textiles
Wool Processing
Wool Scouring
Wool fulling
Wool Carbonizing
Water Usage
Data Processing Block

16. Printing Processes
Fixation
Fixation with Vapor of Organic Solvent
Dyestuffs for Methylene Chloride Fixation Processes
Improved Fixation of Reactive Dyes on Cellulose Fibers
Treatments of Cellulosics
Crosspadding or Overprinting Impregnated Cellulose Materials
Basic Dyes and Simultaneous Crosslinking
Printing and Simultaneous Finishing
Other Treatments
Addition of Lactone for pH Adjustments
Sodium Hydrosulfite Aftertreatment of Aromatic Polymers
Improved Pretreatment and Aftertreatment for Optimum Handle
Aftertreatment with Surfactant and Reductonate
Coloration of Aromatic Polyester or Cellulose Triacetate
Special effects
Continuous Process for Two-Color Effect on Blends
Double-Surface Multicolor Printed Cloth
Double Face Printing of Polyester Fabrics
Well-Defined Multicolor Patterns on Porous Substrates
Polymer-Printed Fabric Having Differential Dyeing Characteristic
Acid Dye Mixture for Differential-Dyeing Nylons
Spotted Effect on Synthetic Fiber Materials
Resist Printing Polyesters with Acid Dyes
Discharge Effects on Prints with Disperse Dyes
Reserve Effects in Multicolor Printing
Relief Printing to Simulate Animal Skins
Camouflage Dyeings and Prints on Synthetics and Blends
Photographic Techniques
Continuous Repetitive Patterns on Piled Fabrics
Impregnation with Leuco Ester of Vat Dyestuff
Other Processes
Continuous Process for Optical Brightening and Printing
Continuous Dyeing and Printing of Piece Goods
Printing Heavy Pile Fabrics with Powder Preparations
Improved Alignment of Printed Patterns
Uniform Heat-Setting of Continuous Synthetic Filament Groups
Voluminous Substrate Rolled Up with Foamed Dye
Continuous Printing Process by Direct Liquid Film Transfer
Method for Printing and Flocking Simultaneously
Sprayed Carriers for Continuous Print Fixation
17. Weaving of Synthetic Yarns And Blends
Introduction
Polyester Blended Fabrics
Sizing
Pirn Winding
Weaving
Weaving of Multifilament Yarns
Commonly Used Multifilament Fabrics
Warping
Sizing
Monofilament Fabrics
18. Weaving of Certain Commercial Fabrics
Introduction
Weaving of Poplin
Wrap preparation
Weaving
Denim
Dyeing and Sizing Processes
Tyre Cord Fabric
Yarn and Fabric Particulars
Production Flow for Tyre Cord Fabric
Weaving
Weaving of Tapes
Tubular Cloth
Weaving of Aramide (Kevlar) yarns
Characteristics of Aramides
Ranges of Application of Kevlar Fibres
Basic Requirements
Warping
Sizing
Weaving
19. Weaving and Fabric Engineering Calculations
Introduction
Conversion Tables
Yarn Numbering System
SI Units recommended for Textiles
Folded Yarns
Average Count
Weight of a Piece of Cloth
Heald Calculations
Reed Calculations
Take-Up Motion on a Plain Loom
Loom speed
Production of Looms
Efficiency
Shuttle Movement
Accelerating force of Sley
Calculation on shuttleless weaving Machines Example 33
Fractional Cover and Cover Factor
Diameter
Bulk density
Fractional Cover
Cloth Setting Rules
20. Fabric Defects and Value Loss
Grading of fabrics
Value loss
Types of Fabrics Defects
Common Fabric Defects and their causes
Bar
Box Mark
Broken Pattern
About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.