Handbook on Coal, Coke, Cotton, Lignin, Hemicellulose, Wood, Wood-Polymer Composites, Lignocellulosic-Plastic Composites from Recycled Materials, Wood Fiber, Rosin and Rosin Derivatives

Author: - Dr. Himadri Panda

Format: paperback

Code: NI312 Pages: 512

Price: Rs.1875US\$ 150

Publisher: NIIR PROJECT CONSULTANCY

SERVICES

Usually ships within 5 days

Handbook on Coal, Coke, Cotton, Lignin, Hemicellulose, Wood, Wood-Polymer Composites, Lignocellulosic-Plastic Composites from Recycled Materials, Wood Fiber, Rosin and Rosin Derivatives

(Also Known as Handbook on Coal, Lignin, Wood and Rosin Processing)

Coal is the product of plants, mainly trees that died tens or hundreds of millions of years ago. Coal is a fossil fuel and is the altered remains of prehistoric vegetation that originally accumulated in swamps and peat bogs. The energy we get from coal today comes from the energy that plants absorbed from the sun millions of years ago. Coal is used primarily as an energy source, either for heat or electricity. It was once heavily used to heat homes and power locomotives and factories. Bituminous coal is also used to produce coke for making steel and other industrial process heating. Lignin is a constituent of the cell walls of almost all dry land plant cell walls. It is the second most abundant natural polymer in the world, surpassed only by cellulose. Lignin is found in all vascular plants, mostly between the cells, but also within the cells, and in the cell walls.

Wood is an aggregate of cells essentially cellulose in composition, which are cemented together by a substance called lignin. The cells are made of three substances called cellulose (about 50 percent), lignin (which makes up a fifth to a quarter of hardwoods but a quarter to a third of softwoods), and hemicellulose. Rosin refers to an extraction process that utilizes a combination of heat and pressure to nearly instantaneously squeeze resinous sap from your initial starting material

In India's energy sector, coal accounts for the majority of primary commercial energy supply. With the economy poised to grow at the rate of 8-10% per annum, energy requirements will also rise at a reasonable level. The Indian coal industry aspires to reach the 1.5 billion tonne (BT) mark by FY 2020. In fore-coming years, the industry will naturally need to focus on building on the success, and be on track for reaching the FY 2020 goal. One of the primary goals of the Government of India is to ensure that it is able to meet the country's power generation needs. Another aim is to lower the country's reliance on coal imports by boosting the coal production quickly.

The Major contents of the book are Coal, Analysis of Coal and Coke, Cotton, Lignin and Hemicelluloses, Degradation of Wood, CCA-Treated Wood, Wood-Polymer Composites, Lignocellulosic-Plastic Composites from Recycled Materials, Chemical Modification of Wood Fiber, Delignification of Wood with Pernitric Acid, Rosin and Rosin Derivatives, Polymerizable Half Esters of Rosin and Photographs of Plant & Machinery with Supplier's Contact Details.

It will be a standard reference book for professionals, entrepreneurs, those studying and researching in this important area and others interested in the field of these industries.

Chapter 1
Coal
Ethylene
Fischer –Tropsch Synthesis for Olefins
Direct Conversion of Synthesis Gas to Ethylene
Ethanol from Synthesis Gas
Olefins from Methanol
Methanol Homologation
Methanol to Acetic Acid
Ethylene Glycol
Acetic Anhydride
Vinyl Acetate
Other Chemicals
Coal Pyrolysis Processes
Acetylene
Production of Chemicals by Coal Liquefaction Processes
Conclusion
Chapter 2
Analysis of Coal and Coke

Methods of Analysis

Sampling
Determination of Constitution and Physical Properties
Functional Group Analysis
Spectroscopy
Determination of Optical Constants
Electron Microscopy
Density
X-Ray Diffraction
Specification Tests
Proximate Analysis
Ultimate Analysis
Calorific Value
Fusibility of Coal Ash
Behaviour on Healing
Equilibrium Moisture of Coal at 96-97%
Relative Humidity and 39oC
Determination of Harcbgrobve Grindability
Index of Coal
Special Constituents
Coal Classification
Chapter 3
Cotton
Methods of Analysis
Modified Cottons
Finishing Agents

Separation and Identification
Spectroscopic Methods
Inorganic Constituents
Chemical Methods
Spectroscopic Methods
Chapter 4
Lignin and Hemicellulose
Hemicellulose
Assay systems
Classification
Thermophilic Hemicellulases
Alkaline active xylanases
ß - Xylosidase
ß - Xylosidase Mannanases and galactanses
•
Mannanases and galactanses
Mannanases and galactanses Accessory enzymes for Hemicellulose utilization
Mannanases and galactanses Accessory enzymes for Hemicellulose utilization Lignin
Mannanases and galactanses Accessory enzymes for Hemicellulose utilization Lignin Lignin-degrading enzymes
Mannanases and galactanses Accessory enzymes for Hemicellulose utilization Lignin Lignin-degrading enzymes Lignin degradation in whole cell cultures
Mannanases and galactanses Accessory enzymes for Hemicellulose utilization Lignin Lignin-degrading enzymes Lignin degradation in whole cell cultures Degradation by cell-free enzyme systems
Mannanases and galactanses Accessory enzymes for Hemicellulose utilization Lignin Lignin-degrading enzymes Lignin degradation in whole cell cultures Degradation by cell-free enzyme systems Role of glycosides in Lignin degradation
Mannanases and galactanses Accessory enzymes for Hemicellulose utilization Lignin Lignin-degrading enzymes Lignin degradation in whole cell cultures Degradation by cell-free enzyme systems Role of glycosides in Lignin degradation Lignin-carbohydrate complexes
Mannanases and galactanses Accessory enzymes for Hemicellulose utilization Lignin Lignin-degrading enzymes Lignin degradation in whole cell cultures Degradation by cell-free enzyme systems Role of glycosides in Lignin degradation Lignin-carbohydrate complexes Fractionation of Lignin and Carbohydrate in wood

Frequency and stability of LC bonds
Residual lignin in kraft pulp
Biodegradation of LCCs
Residual LC structures after exhaustiveenzymatic digestion
Solubitization of LCC by microbial activity
Enzymatic treatments of pulps
Conclusion
Chapter 5
Degradation of Wood
Introduction
Gross Chemical Composition
Distribution of Wall Components
Component Chemistries
Microstructure and Porosity
Degradation of whole wood
Biodegradation of Lignin
Biodegradation of Cellulose
Biodegradation of Hemicellulose
Applications
Conclusion
Chapter 6
Cca-Treated Wood
Introduction
Materials and methods

Results and Discussion

Conclusion

Chapter 7 Wood-Polymer Composites Introduction Materials and Methods Monomers Wood specimens Treatment of specimens with monomers Volumetric swelling and moisture content Result Swelling of wood soaked in monomers Polymer loading Volumetric swelling of WPC specimens Moisture content of WPC specimens Conclusions Chapter 8 Lignocellulosic-Plastic Composites from Recycled Materials Municipal Solid Waste as a Source of Lignocellulosic Fibre and Plastics Thermoformable composites as Outlets for Waste Paper, Wood and Plastics Recent Research on Wood Fiber-Thermoplastic Composites Research and Development Needs **Concluding Remarks**

Chemical Modification of Wood Fiber
Introduction
Experimental Procedure
Esterification Procedure
Analyses of Esterification Products
Board Formation
Board Testing
Moisture sorption
Rate and extent of swelling
Results and Discussion
Esterification of Wood Fiber
Moisture Sorption of Esterified Fiberboards
Rate and Extent of Swelling of Fiberboards in Liquid Water
Plasticization of Esterified Fibers
Conclusions
Chapter 10
Delignification of Wood with Pernitric Acid
Generation of pernitric acid
Decomposition of pernitric acid
Delignification of aspen wood
Conclusions
Experimental
Chapter 11

•

Rosin and Rosin Derivatives

Composition
Reaction and derivatives
Isomerization
Maleation
Oxidation
Photosensitized oxidation
Hydrogenation
Hydrogenless Hydrogenation
Polymers of vinylesters of hydrogenated rosin
Prehydrogenation
Hydrocracking of Rosin
Dehydrogenation
Polymerisation
Analysis
Compatibility
Solubility
Instrumental analysis
Gas chromatography analysis
Infrared Spectroscope
Nuclear magnetic resonance
Ultraviolet spectroscopy
X-Ray Analysis
Mass Spectroscopy
Phenolic modification
Out to made
Salt formation

With unsaturated cyclic and acyclic hydrocarbons
Example-2
Rosin-isoprene condensate (Example-3)
Rosin-isobutene condensate (Example-4)
Example -5
Rosin-styrene condensalt (Example-6)
Rosin-cyclopentadiene condensate (Example-7)
Rosin-coumarone-indene condensate (Example-8)
Rosin-divynylbenzene condensate (Example-9)
Example-10
Esterification
With Glycerol
With pentaerythritol and other polyhydric alcohols
With monoydric alcohols
Hydrogenolysis
Polyesterification
Copolyesters
Ammonolysis
Preparations
Dehydroabietylamine acetate
Dehydroabietylamine
Typical Uses
Asphalt additives
Chemical Intermediates
Corrosion Inhibitors
Flotation Reagents
Preservatives

Resolving agent
Chemical and physical properties of Amine D acetate
Stability to heat and storage
Stability to heat and storage
Surface Activity
Chemical Reactivity
Chemical and Physical Properties of
Amine D acetate
Solubility
Note
Stability to Heat and Storage
Stability to Air and Sunlight
Surface Activity
Styrenation
Decarbxylation
Hydroxymethylation and hydroxylation
Methods of preparations
Nitrogenous intermediates
Methyl levopimarate (i)
Methyl neoabietate (ii)
Methyl photolevopimarate (iii)
Reaction of SSI with Methyl levomarate (i)
Reaction of Chlorosulphonyl isocyanate with methyl neoabietate (ii)
Reaction of Chlorosulphonyl isocyanate with methyl photolevopimarate (iii)
Fumaroniprile Adduct of levopimaric acid

Tetracyanoethylene Adduct of levopimaric acid
Acrylonitrile adducts of levopimaric acid
Polyoxyalkylation
Chapter 12
The Polymerizable Half Esters of Rosin
Expermental
Preparation and properties of monomers
Maleic rosin esters with reactive groups
Polymerization & Copolymerization
Aqueous Polymerization
Suspension Polymerization
Secondary reactions and graft copolymers
Reaction Involving Crosslinking
Applications
Coatings
Inks
Textiles
Conclusions
Chapter 13
Photographs of Plant & Machinery with Supplier's
Contact Details

About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners,

specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

Our various services are: Detailed Project Report, Business Plan for Manufacturing Plant, Start-up Ideas, Business Ideas for Entrepreneurs, Start up Business Opportunities, entrepreneurship projects, Successful Business Plan, Industry Trends, Market Research, Manufacturing Process, Machinery, Raw Materials, project report, Cost and Revenue, Pre-feasibility study for Profitable Manufacturing Business, Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Business Opportunities, Investment Opportunities for Most Profitable Business in India, Manufacturing Business Ideas, Preparation of Project Profile, Pre-Investment and Pre-Feasibility Study, Market Research Study, Preparation of Techno-Economic Feasibility Report, Identification and Section of Plant, Process, Equipment, General Guidance, Startup Help, Technical and Commercial Counseling for setting up new industrial project and Most Profitable Small Scale Business.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs are often faced with the dilemma of zeroing in on a suitable product/line.

NIIR PROJECT CONSULTANCY SERVICES, 106-E, Kamla Nagar, New Delhi-110007, India. Email: npcs.india@gmail.com Website: NIIR.org

Fri, 09 May 2025 06:11:04 +0000