
Author: NIIR Board of Consultants & Engineers
Format: Paperback
ISBN: 9788178331775
Code: NI311
Pages: 672
Price: Rs. 1,275.00 US$ 33.95
Publisher: Asia Pacific Business Press Inc.
Usually ships within 5 days

Polyester or polyethylene terephthalate (PET) is an unreinforced, semi-crystalline thermo-plastic polyester derived from polyethylene terephthalate. Its excellent wear resistance, low coefficient of friction, high flexural modulus, and superior dimensional stability make it a versatile material for designing mechanical and electro-mechanical parts. PET is fully recyclable and can be easily reprocessed into many other products for many different applications. However, unlike paper and other cellulose products, PET does not readily decompose. However, biodegradable additives are available that enhance the biodegradation of this plastic without affecting the physical properties.

Formation of a flexible polyurethane foam is an intricate process employing unique hardware, multiple ingredients and at least two simultaneous reactions. The urethane forming reaction occurs between the isocyanate and the polyol. Polyurethanes, also known as polycarbamates, belong to a larger class of compounds called polymers. Polyurethanes can be produced in four different forms including elastomers, coatings, flexible foams, and cross-linked foams. Elastomers are materials that can be stretched but will eventually return to their original shape. They are useful in applications that require strength, flexibility, abrasion resistance, and shock absorbing qualities.

Thermoplastic polyurethane elastomers can be molded and shaped into different parts. This makes them useful as base materials for automobile parts, ski boots, roller skate wheels, cable jackets, and other mechanical goods. When these elastomers are spun into fibers they produce a flexible material called spandex. Spandex is used to make sock tops, bras, support hose, swimsuits, and other athletic apparel. Co-injection is the process of injecting two resins simultaneously through a single gate to form a multi-layer structure. Recently, there has been a re-emergence of interest in co-injection technology spurred on by the development of new resins, barrier systems, controls, and hardware technologies.
Increasing demand of polyethylene terephthalate (PET) from food and beverage sector like in carbonated soft drinks packaging, increase demand for packaged food due to rise in consumption of frozen and processed food, rise in demand for electronics and automotive applications/industries and ecofriendly substitution are the most important driving factors in the polyethylene terephthalate market. Also, rapid urbanization, innovative packaging and high economic growth is contribution in increasing the demand for polyethylene terephthalate regardless of the geographical location.

This book will be a mile stone for its readers who are new to this sector, will also find useful for professionals, entrepreneurs, those studying and researching in this important area.

Contents

1. PROPERTIES AND APPLICATIONS OF SPECIALITY PLASTICS

Polytetra Fluoroethylene (PTFE)
Thermoplastic Polyurethanes (TPU)
Polysulphones (PSO)
Polyether Sulphone (PES)
Polyphenylene Sulphide (PPS)
Polyphenylene Ether (PPE)
Polyether Etherketone (PEEK)
Polyarylates
Polyamide Imide (PAI)
Polyether Imide (PEI)
Liquid Crystal Polymers (LCP)

2. FORMATION OF URETHANE FOAMS

Introduction
The Chemistry of Foam Formation and cure
1. Reaction of Isocyanates
2. Function of the isocyanate in Foaming
3. Role of Catalysts in Foam systems
 A. The Tertiary Amine Catalysts
 B. The Tin Catalysts
 C. Mixed Catalysts Systems
The Final Cure of Urethane Foams
Colloid Chemistry of Foam Formation
1. Bubble Nucleation
2. Bubble Stability
3. Urethane Foam Systems
Viscoelastic Changes in Foaming
1. Effect on Cell Structure, Voids, and Foam Collapse
2. Relations between Cell Structure and Properties
3. Structure Factors Affecting Stress Relaxation and Creep in Flexible Foams

3. FLEXIBLE FOAMS
Introduction
Raw Materials Used in Flexible Foams
1. Isocynates
2. Polyols Blowing
3. Agents Catalysts
4. Surfactants
5. Miscellaneous Additives

Foam Systems
1. General Methods of Preparation
2. Prepolymers
 A. Variables in the preparation of prepolymers
 1. Raw Materials Control
 2. Effect of Isocyanate-Hydroxyl Ratio
 3. Effect of Polyol Variation
 4. Effect of Reaction Time and Temperature
 5. Effect of water
 6. Effect of catalysts
 7. Effect of Agitation
 8. Effect of Reactor size
 B. Procedures for the preparation of prepolymers
 1. Batch Procedures
 2. Preparation of Prewpolymers with Biuret Branching
 3. Preparation of Prewpolymer with Allophanate Branching
 4. Preparation of Prewpolymer with Urethane Branching
 5. Preparation of Polyester Prepolymer
 6. Preparation of Castor Oil-Based Prepolymers
 7. Batch Plant Process for Polyether Prepolymers
 8. Catalyzed Prepolymer Preparation
 9. Stabilization of Prepolymers
 C. Foaming of prepolymers
 1. Free Isocyanate Content
 2. Water
 3. Surface Active Agents
 4. Catalysts
 5. Other Additives
 Plasticizers
 Pigments and Fillers
 Flame Retardants
 3. Semi-Precopolymers
 4. One-shot Foams
 1. Chemical variations
 Effect of water
 Effect of Catalysts
 Effect of Emulsifiers and Additives
 2. Mechanical Variations
 3. Physical Variations
 4. Formulation Variations
 B. Variables in the preparation of one-shot Polyether Foams
 1. Effect of Polyols
 2. Effect of Diisocyanate
 3. Effect of Blowing Agents
 4. Effect of Catalysts
 5. Effect of Silicones
 6. Effect of Filters and Additives
 7. Formulation Variations
 Methods of Foam Application
 1. Foaming Equipment
2. Manufacture of Slab Stock
 A. Foam Production
 B. Sectioning of Slab Stock
 C. Counter Shaping
 D. Post-Forming
3. Molding of Flexible Foam
4. Frothing of Flexible Foams
5. Foaming of Urethane Elastomers
6. Spraying of Flexible Foams

Properties of Flexible Foams
1. General Properties
2. Specific Properties
 A. Aging of Flexible Foam
 B. Sound Absorption
 C. Low and High Temperature Properties
 D. Solvent and Chemical Resistance
 E. Oxidation and Ultraviolet Resistance
 F. Flammability of flexible Urethane Foams
 G. Fatigue Properties

Application of Flexible Foams
1. Furniture
2. Bedding
3. Transportation
 A. Automotive
 B. Aircraft
 C. Public Seating
4. Packaging
5. Clothing, Textile and Miscellaneous Foam Laminates
6. Carpet Underlay
7. Sporting goods
8. Toys and Novelties
9. Sponges and Miscellaneous Household Items
10. Filtering Materials
11. Construction, Insulation and Miscellaneous Uses
12. Military and Missile Uses
13. Horticultural
14. Footwear
15. Medical

Miscellaneous Flexible Foam Systems

4. RIGID FOAMS

Introduction
1. Raw Material used in Rigid Foams
 1. Isocyanates
 2. Polyols
 3. Blowing Agents
 4. Catalysts
 5. Surfactants
 6. Flame Retardants
 7. Miscellaneous Additives

Foam System
1. Polymer Preparation
A. Semi-Prepolymer
B. Complete Prepolymer
C. One-shot Systems
2. Foam Preparation
 A. Effect of Isocyanate Variations
 B. Effect of Polyol Variations
 C. Effect of Blowing Agents
 D. Effect of Catalysts
 E. Effect of Surfactants
 F. Effect of Fillers
 G. Flame Retardants
Methods of Foam Production
1. Batch Preparation
2. Continuous of Intermittent Pouring
 A. Nonfroth Systems
Metering Equipment
Mixing of Components
B. Frothing System
3. Spraying
4. Production of Finished Foam
 A. Continuous Slab Production
B. Molding Operations
C. Foming-in-Place
Foam Properties
1. General Properties
2. Specific Properties
 A. Coefficient of Expansion
 B. Service Temperature
 C. Closed Cell Content
 D. Thermal Insulation
 E. Adhesion to Various Substrates
 F. Water Absorption
 G. Water Vapor Permeability
 H. Humid Aging
 I. Solvent Resistance
 J. Electrical Properties
 K. Sound Insulation
 L. Fungus Resistance
Applications of Rigid Foams
1. Refrigeration Insulation
2. Refrigerated Trucks and Trailers
3. Insulation of Pipes and Tanks
4. Structural Uses
5. Uses in the Aircraft Industry
6. Military Uses
7. Void Filling and Insulation of Ships
8. Uses in Packaging
9. Uses in the Electric Industry
10. Aerospace Applications
11. Miscellaneous Uses
Miscellaneous Foaming Systems

5. ONE-STAGE INJECTION STRETCH BLOW MOULDING
Introduction
One-Stage Machines
1. One-Stage Machine Construction
Process Stations on one-Stage Machine
1. Injection mould and hot runner
A. Process conditions affecting perform quality
2. Conditioning Station
3. Blowing Station
Integrated Two-Stage machines
Dying System
1. Requirements for a reliable drying system
2. Drying process monitoring
Preform Design
1. Neck finish
2. Preform weight
3. Cycle time and preform wall thickness
4. Stretch rations
5. Injection mould design and manufacture
6. Preform design for varying container sizes
7. Preform weight adjustment
8. Difference between one- and two-stage preform designs
Container Design
Hot-Fill Pet Bottles
Quality Control Procedures
Preform Examination
1. Appearance and shape
2. Preform weight
3. Neck dimensions
4. Preform eccentricity
5. Polarised light inspection
6. Intrinsic Viscosity (IV)
7. Actetaldehyde (AA)
Container Examination
1. Shape and appearance
2. Dimensions
3. Capacity
4. Container wall thickness and material distribution
5. Top load strength
6. Impact resistance (drop) test
7. Leakage of liquid (seal integrity)
8. Vacuum strength
9. Acetaldehyde (AA)
10. Oxygen permeation
11. Moisture Vapour transmission rate
12. Product filling temperature
13. Container weight
Bottles for Carbonated Beverages
1. Burst pressure
2. Thermal stability
3. Carbon retention
Additional Tests for Hot-Fill containers
Additional Tests for Returnable/reffillable Pet Bottles
6. INJECTION BLOW MOULDING
 Introduction
 Basic Principles
 History
 Commercial Processes
 1. Rotary table machines: Jomar, Uniloy and similar
 Tooling
 Procrea
 Material
 Applications
 Machine and Process Capabilities

7. PET MATERIAL AND APPLICATIONS
 Introduction
 Polymerisation and Manufacturing Processes
 1. Manufacturing plants
 Structures, Morphology and Orientation
 1. Structure
 2. Morphology
 3. Orientation
 4. Creep
 Properties
 1. Molecular weight and intrinsic viscosity
 2. End group
 3. Thermal properties
 2. End group
 3. Thermal properties
 Rheology and Melt Viscosity
 1. Melt viscosity
 2. Melt Flow
 3. Moulding Shrinkage
 Moisture Uptake and Polymer Drying
 1. Moisture level
 2. Polymer drying
 Degradation Reactions
 1. Thermal and thermal oxidative degradation
 2. Environmental Degradation
 Reheat Characteristics
 Gas Barrier properties
 Amorphous Polyesters
 1. Homopolymers
 2. Low copolymers
 3. Medium copolymers
 4. High copolymers
 Crystalline polymers
 Polymer Blends
 Applications
 Trends
 Globals

8. INJECTION AND CO-INJECTION PREFORM TECHNOLOGIES
 Multilayer Characteristics
Applications
1. Performance-Driven Applications
2. Economics - or Legislative-Drive Applications
3. Combination Applications
Closure vs Bottle Permeation
Container Performance
1. Barrier properties
2. Oxygen barrier
3. Carbon dioxide barrier
4. Scavenger property
Wall structure
Preform and Bottle Design
1. Permeation through finish, sidewall and base
2. Controlled fill
Headspace Oxygen Absorption
Oxygen Desorption From Pet
Beer Containers
Small Juice Containers
Small CSD containers
Core layer volumes
Comparison of Co-Injection technologies
Co-Injection Moulding Equipment

9. PET FILM AND SHEET
Introduction
The Film Process
1. Polymer preparation and handling
2. Extrusion and Casting
 a. Extrusion
 b. Casting
3. Drawing
 a. The forward draw preheat (FWDPH)
 b. The forward draw (FWD)
 c. The sideways draw preheat (SWDPH)
 d. The sideway draw (SWD)
4. Heat Setting
5. Slitting and Winding
 a. In line slitting and knurling
 b. Winding conditions
6. Reclalm and recovery
Polymer, Process and Properties (3ps)
1. Polymer
2. Process
3. Properties
Surface and Bulk Properties
1. Film properties
2. Coating
3. Co-extrusion
4. Fillers
5. Shrinkage
6. Combination of effects
PET Sheet
1. Extrusion of PET sheet
2. Thermoforming of CPET sheet
4. Material
5. New developments
Conclusion-Film

10 PLASTICS AS SAFE & HYGIENIC MEDIUM FOR PACKAGING FOOD & FOOD PRODUCTS
Glimses of Modern India
Views & changing practices
Scarcity among plenty
Consumer market
Food packaging a need
Food Safety The Ultimata
Risk assessment & food packaging regulations
Compatibility studies
Migration modelling
Package Design
Packaging Development Process
Plastics as a Choice
Plastic Use for Packaging in India
Lowest cost packaging
Plastic-Packaging Solution for Food Products
Growing user of plastic in Packaging
Plastics and their present usages
Indian Polymer Demand in KTPA
Plastics reduce post harvest wastage
Wastage of food product in India
Plastic crates for post harvest packing
Polypropylene boxes for horticulture packaging
Plastics in bulk packaging
Bulk Packaging Jute V/s PWS
Suitability of PP/PE Bags for Food Grains & Sugar Storage
Specialized Food Packaging
Case study
Plastics & Food shelf Life
Plastics packaging for sterilized/irradiated food products
National Standards on Packaging code for fresh & Processed Food
Indian Food Laws and Packaging specification
Edible Oil packaging Act
Packaging, Plastics & Environment
IS packaging or plastics the Real Culprit
ECO- Protection programmes
Future: What plastics have to offer

11. TWO STAGE INJECTION STRETCH BLOW MOULDING
Introduction
1. The principles of the Two-stage process
 a. Preform moulding
 b. Container stretch blow moulding
 c. Preform and container design
2. Technological Basics of Pet as a Stretch Blow moulding material
3. Production concepts and target market
 Preform Injection Moulding
 1. Injection machine concepts
a. Plasticizing
Clamping
2. Mould Design
a. Hot runner system
b. Gates and cavities
Productivity Parameters
a. Cycle time
b. Preform design and key related parameters
c. Preform quality and key related parameters
Stretch Blow Moulding
1. Principles of the two stage stretch blow moulding process
a. Preform reheating
b. Stretch blow moulding
Technologies for thermally stable containers
Thermal relaxation and pre-shrinkage
Hot-fill
Heat-set
Super heat-set
2. Machinery concepts
Mould technology
Preform and Container Design
Container design
Preform design

About NiIR

NiIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes various process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs are often faced with the dilemma of zeroing in on a suitable product/line.