Epoxy is a term used to denote both the basic components and the cured end products of epoxy resins, as well as a colloquial name for the epoxide functional group. Epoxy resin are a class of thermoset materials used extensively in structural and specialty composite applications because they offer a unique combination of properties that are unattainable with other thermoset resins.

Epoxies are monomers or prepolymer that further reacts with curing agents to yield high performance thermosetting plastics. They have gained wide acceptance in protecting coatings, electrical and structural applications because of their exceptional combination of properties such as toughness, adhesion, chemical resistance and superior electrical properties. Epoxy resins are characterized by the presence of a three membered cycle ether group commonly referred to as an epoxy group 1,2-epoxide, or oxirane. The most widely used epoxy resins are diglycidyl ethers of bisphenol-A derived from bisphenol-A and epichlorohydrin.

The market of epoxy resins are growing day by day. Today the total business of this product is more than 100 crores. Epoxy resins are used for about 75% of wind blades currently produced worldwide, while polyester resins account for the remaining 25%. A standard 1.5-MW (megawatt) wind turbine has approximately 10 tonnes of epoxy in its blades. Traditionally, the markets for epoxy resins have been driven by demand generated primarily in areas of adhesives, building and civil construction, electrical insulation, printed circuit boards, and protective coatings for consumer durables, amongst others.

The major contents of the book are synthesis and characteristics of epoxy resin, manufacture of epoxy resins, epoxide curing reactions, the dynamic mechanical properties of epoxy resins, physical and chemical properties of epoxy resins, epoxy resin adhesives, epoxy resin coatings, epoxy coating give into water, electrical and electronic applications, analysis of epoxides and epoxy resins and the toxicology of epoxy resins.
It will be a standard reference book for professionals and entrepreneurs. Those who are interested in this field can find the complete information from manufacture to final uses of epoxy resin. This presentation will be very helpful to new entrepreneurs, technocrats, research scholars, libraries and existing units.

Contents

1. Synthesis and Characteristics of Epoxy Resin
   
   Introduction
   
   Structure of Epoxides
   
   Epoxipation of Unsaturated Hydrocarbons
   
   Catalytic Oxidation of Ethylene and Higher Olefins
   
   Epoxidation by Peroxy Acids and Their Esters
   
   Preparation of Peroxy Acids
   
   In Situ Epoxidation
   
   The Epoxidation Mechanism
   
   Unsaturated Materials
   
   Epoxidation by Inorganic Peroxy Acids
   
   Epoxidation with Aliphatic and Aromatic Hydrocarbon Hydroperoxides
   
   Epoxidation with Chromic Acid and Chromyl Compounds
   
   Biological Epoxidation
   
   Dehydrohalogenation of Substituted Hydroxyl Compounds
   
   The Epoxidation Mechanism
   
   Halohydrin Formation
   
   Epoxides from Epichlorohydrin
   
   Glycidyl Ethers
   
   Glycidyl Esters
   
   Nitrogen-Containing Epoxides
   
   Thioglycidyl Epoxides
   
   Silicon-Containing Epoxides
Organophosphorus Epoxides
Halogen-Containing Epoxides
Epoxides from Hydroxy Sulfonates or Halogenated Acetates
Epoxides from Glycols
Epoxidation by Condensation
Darzens Glycidic Ester Condensations
Epoxides from Ylids
Epoxides from Halogenated Ketones and Nickel Carbonyl
Epoxides from the Reaction of Diazomethane with Aldehydes or Ketones
Epoxides Containing Unsaturation
Conclusions

2. Manufacture of Epoxy Resins
   Raw Materials
   Manufacture
   Plant Location
   Machinery Needed
   Profit

3. Epoxide-Curing Reactions
   The Effect of Epoxide Structure on Reactivity with Curing Agents
   The Mechanism of the Curing Reaction
   Polyaddition Reactions
   Polyamines
   Polyamides
   Polyureas
   Polyurethanes
4. The Dynamic Mechanical Properties of Epoxy Resins

Basic Parameters

The Glassy Transition and Dynamic Mechanical Dispersion

Temperature and Frequency Interdependence

Experimental

Results and Discussion

Standard Measurements

Dynamic Measurements

Comparison of Results

Treatment by Reduced Variables

Conclusions

5. Physical and Chemical Properties of Epoxy Resins

Solubility and Surface Properties
Network Structure and Physical Properties
Aging and Chemorheology
Bisphenol a Epoxy Homopolymers and Copolymers
Thermal Transition Effects
Dynamic Mechanical Response
Relaxation and Fracture Properties
Properties Compared with Elastomers and Thermoplastics

6. Epoxy Resin Adhesives

Introduction
Theories of Adhesion and Adhesive-joint Strength
Wetting and Spreading Phenomena
Boundary-Layer Theory
Surface-Attachment Theory of Adhesive-Joint Strengths
Stress Distribution in Adhesive Joints
Rheological Aspects of Adhesives
Unified Interpretation of Adhesive-Joint Strengths
Physical and Mechanical Aspects of Epoxy-Resin Adhesives
Dynamic Mechanical Techniques
Mechanical Behavior of Epoxy Adhesives During Joint Formation
Strength of Adhesive Materials
Chemical Aspects of Epoxy-based Adhesives
Curing Agents for Bisphenol A Epoxy Adhesives
Modifiers for Bisphenol A Epoxy Adhesives
Adhesives Based on Other Epoxy Materials
Technological Properties of Epoxy-adhesive Systems
Cure and Thermal Softening Behavior of Epoxy Adhesives
7. Epoxy Resin Coatings

Classification of Epoxy-Resin Coatings

Epoxy Resins Commonly Used in Coatings

Epoxy-Resin Esters

Esters Produced from Solid Epoxy Resins

General Remarks

Formulation Latitude

Esters Produced from Liquid Epoxy Resins

Precatalyzed Liquid Epoxy Resin for the Production of Solid Epoxy Resins and Epoxy-Resin Esters

Cooking Procedure

“Two-Step” Liquid-Epoxy-Resin Route to Epoxy-Resin Esters

Cooking Procedure

Solid-Epoxy-Resin Solution Coatings

Cold-Cured Epoxy-Resin Systems

Polyamine Curing Agents

Polyamine-Adduct Curing Agents

Polyamide-Resin Curing Agents

Polyamide-Adduct Curing Agents

Tertiary Amine Curing Agents

Industrial Maintenance Coatings Based on Cold-Cured Epoxy-Resin Systems

High-Film-Build Cold-Cured Epoxy-Resin Coatings

Application Instructions
Manufacturing Instructions
Epoxy Baking Finishes
Epoxy-Phenolic Coating Systems
Epoxy-Urea-Formaldehyde Resin Coating Systems
Epoxy-Thermosetting Acrylic Coating Systems
Liquid Epoxy Resins in Solventless and Super-High-Solids Systems
Special Application Equipment and Formulation for Solventless Systems
Manufacturing Instructions
Application
Ketimine Curing Agents
Manufacturing Instructions
Application
Curing Characteristics
Powder Coatings
Application Equipment
Epoxy-Resin Powder-Coating Formulations
Fusion-Produced Epoxy-Resin Powders
Manufacturing Instructions
Applications Instructions
Dry-blended Epoxy-Resin Powders
Manufacturing Instructions
Application Instructions
Properties and Applications
Thermoplastic Epoxy Resins
Zinc-Rich and General Purpose Shop Primers
Manufacturing Instructions
Application Instructions
8. Epoxy Coating Give into Water

9. Electrical and Electronic Applications: Sealants and Foams

Electronic and Electrical Applications

Introduction

Casting

Potting

Encapsulation

Coatings

Sealing
Molding
Formulation of the Resin System
Internal Stresses
Rapid Cures
Flexibilizing Epoxy Resins
Fillers
Reactive Diluents
Cycloaliphatic Epoxides
High-Temperature Epoxy-Resin Systems
Flame-Retardant Epoxy Resins
Colorless Epoxy Resins
Epoxy Formulations
Molding
Molding Compounds
Molding Technology
Liquid-Injection Molding
Pellets and Preforms
Epoxy Sealants
Epoxy Foams
Gas-Blown Foams
Syntactic Foams
One-Package Foams
Epoxy-Foam Applications
Epoxy Strippers
Handling of Epoxy Casting Systems

10. Analysis of Epoxides and Epoxy Resins
Uncured Epoxy Resins

Qualitative Tests

Detection of Free Epoxy Groups

Determination of Epoxy Group—Lithium-Chloride Test

Reagents

Procedure

Determination of Epoxy Group—Periodic Acid Test

Reagents

Procedure

Determination of Epoxy Group—Pyrolysis Test

Reagents

Procedure

Determination of Epoxy Group—Lepidine Test

Reagents

Procedure

Detection of the Bisphenol A Skeleton

Determination of Bisphenol A Epoxy Resins—Mercuric Oxide and Nitric Acid Tests

Reagents

Procedure

Determination of Bisphenol A Epoxy Resins in Coatings—Nitric Acid Test

Reagents

Procedure

Determination of Bisphenol A Epoxy Resins—Filter-Paper Test

Reagents

Procedure

Determination of Bisphenol A Epoxy Resin—Formaldehyde Test
Reagents

Procedure

Determination of Bisphenol A Epoxy Resins—Phenylenediamine Test

Reagent

Procedure

Detection of Epoxy Resins Based on 4,4'-Diamino-diphenylmethane

Determination of Epoxy Resins Based on 4,4'-Diaminodiphenylmethane

Reagents

Procedure

Detection of Other Epoxy Resins

Quantitative Tests of the Epoxy Group

Hydrohalogenation Methods

Estimation of Epoxy Group—Hydrochloric Acid in Dioxane, Methyl Ethyl Ketone, or Dimethylformamide

Reagents

Procedure

Calculations

Estimation of the Epoxy Group—Pyridinium Chloride in Pyridine

Reagents

Procedure

Hydrohalogenation by Direct Titration

Estimation of Epoxy Group

Reagents

Procedure

Calculations

Other Chemical Methods

Estimation of Other Functional Groups

Hydroxyl Group
a-Glycol Group

Estimation of a-Glycol Group

Reagents

Procedure

Calculation

Chlorine

Esterification Equivalent Weight

Estimation of Esterification Equivalent Weight

Reagents

Procedure

Calculation

Infrared Spectroscopy

Technique

Epoxide Absorption Bands

Epoxy Resins

Quantitative Estimation

Following the Degree of Cure

Other Physical Methods

Ultraviolet Spectroscopy

Electron Spin and Nuclear Magnetic Resonance Methods

Gas Chromatography

Paper Chromatography

Thin-Layer and Gel-Permeation Chromatography

Handling Properties

Molecular Weight

Softening Point
Viscosity

Color

Blends and Compounds

Hardeners and Accelerators

Organic Acid Anhydrides

Determination of Acid and Anhydride Content

Reagents

Procedure

Calculations

Amines

Determination of Amine Number

Reagents

Procedure

Calculation

The Curing Process

Curing Characteristics of Epoxy Resin-Hardener Systems

Determining the Degree of Cure

Analysis of Cured Epoxy Resins

11. The Toxicology of Epoxy Resins

Introduction

Experimental Method

Materials

Acute Toxicity

Chronic Toxicity

Irritation

Sensitization
Results

Acute Toxicity

Chronic Toxicity

Irritation

Sensitization

Medical Experience with Epoxy Resins

Comment

About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.


NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

NIIR PROJECT CONSULTANCY SERVICES, 106-E, Kamla Nagar, New Delhi-110007, India. Email: npcs.india@gmail.com Website: NIIR.org