Epoxy is a term used to denote both the basic components and the cured end products of epoxy resins, as well as a colloquial name for the epoxide functional group. Epoxy resin are a class of thermoset materials used extensively in structural and specialty composite applications because they offer a unique combination of properties that are unattainable with other thermoset resins.

Epoxies are monomers or prepolymeres that further react with curing agents to yield high performance thermosetting plastics. They have gained wide acceptance in protecting coatings, electrical and structural applications because of their exceptional combination of properties such as toughness, adhesion, chemical resistance and superior electrical properties. Epoxy resins are characterized by the presence of a three membered cycle ether group commonly referred to as an epoxy group 1,2-epoxide, or oxirane. The most widely used epoxy resins are diglycidyl ethers of bisphenol-A derived from bisphenol-A and epichlorohydrin.

The market of epoxy resins are growing day by day. Today the total business of this product is more than 100 crores. Epoxy resins are used for about 75% of wind blades currently produced worldwide, while polyester resins account for the remaining 25%. A standard 1.5-MW (megawatt) wind turbine has approximately 10 tonnes of epoxy in its blades. Traditionally, the markets for epoxy resins have been driven by demand generated primarily in areas of adhesives, building and civil construction, electrical insulation, printed circuit boards, and protective coatings for consumer durables, amongst others.

The major contents of the book are synthesis and characteristics of epoxy resin, manufacture of epoxy resins, epoxide curing reactions, the dynamic mechanical properties of epoxy resins, physical and chemical properties of epoxy resins, epoxy resin adhesives, epoxy resin coatings, epoxy coating give into water, electrical and electronic applications, analysis of epoxides and epoxy resins and the toxicology of epoxy resins.
It will be a standard reference book for professionals and entrepreneurs. Those who are interested in this field can find the complete information from manufacture to final uses of epoxy resin. This presentation will be very helpful to new entrepreneurs, technocrats, research scholars, libraries and existing units.

Contents

1. Synthesis and Characteristics of Epoxy Resin
 - Introduction
 - Structure of Epoxides
 - Epoxipation of Unsaturated Hydrocarbons
 - Catalytic Oxidation of Ethylene and Higher Olefins
 - Epoxidation by Peroxy Acids and Their Esters
 - Preparation of Peroxy Acids
 - In Situ Epoxidation
 - The Epoxidation Mechanism
 - Unsaturated Materials
 - Epoxidation by Inorganic Peroxy Acids
 - Epoxidation with Aliphatic and Aromatic Hydrocarbon Hydroperoxides
 - Epoxidation with Chromic Acid and Chromyl Compounds
 - Biological Epoxidation
 - Dehydrohalogenation of Substituted Hydroxyl Compounds
 - The Epoxidation Mechanism
 - Halohydrin Formation
 - Epoxides from Epichlorohydrin
 - Glycidyl Ethers
 - Glycidyl Esters
 - Nitrogen-Containing Epoxides
 - Thioglycidyl Epoxides
 - Silicon-Containing Epoxides
Organophosphorus Epoxides

Halogen-Containing Epoxides

Epoxides from Hydroxy Sulfonates or Halogenated Acetates

Epoxides from Glycols

Epoxidation by Condensation

Darzens Glycidic Ester Condensations

Epoxides from Ylids

Epoxides from Halogenated Ketones and Nickel Carbonyl

Epoxides from the Reaction of Diazomethane with Aldehydes or Ketones

Epoxides Containing Unsaturation

Conclusions

2. Manufacture of Epoxy Resins

Raw Materials

Manufacture

Plant Location

Machinery Needed

Profit

3. Epoxide-Curing Reactions

The Effect of Epoxide Structure on Reactivity with Curing Agents

The Mechanism of the Curing Reaction

Polyaddition Reactions

Polyamines

Polyamides

Polyureas

Polyurethanes
Polyisocyanates
Polymercaptans
Polyhydric Alcohols
Polyphenols
Polycarboxylic Acids
Polybasic Acid Anhydrides
Silanes and Silanols
Others
Polymerization
Anionic Catalysts
Cationic Catalysts

4. The Dynamic Mechanical Properties of Epoxy Resins
 Basic Parameters
 The Glassy Transition and Dynamic Mechanical Dispersion
 Temperature and Frequency Interdependence
 Experimental
 Results and Discussion
 Standard Measurements
 Dynamic Measurements
 Comparison of Results
 Treatment by Reduced Variables
 Conclusions

5. Physical and Chemical Properties of Epoxy Resins
 Solubility and Surface Properties
Network Structure and Physical Properties
Aging and Chemorheology
Bisphenol a Epoxy Homopolymers and Copolymers
Thermal Transition Effects
Dynamic Mechanical Response
Relaxation and Fracture Properties
Properties Compared with Elastomers and Thermoplastics

6. Epoxy Resin Adhesives

Introduction
Theories of Adhesion and Adhesive-joint Strength
Wetting and Spreading Phenomena
Boundary-Layer Theory
Surface-Attachment Theory of Adhesive-Joint Strengths
Stress Distribution in Adhesive Joints
Rheological Aspects of Adhesives
Unified Interpretation of Adhesive-Joint Strengths
Physical and Mechanical Aspects of Epoxy-Resin Adhesives
Dynamic Mechanical Techniques
Mechanical Behavior of Epoxy Adhesives During Joint Formation
Strength of Adhesive Materials
Chemical Aspects of Epoxy-based Adhesives
Curing Agents for Bisphenol A Epoxy Adhesives
Modifiers for Bisphenol A Epoxy Adhesives
Adhesives Based on Other Epoxy Materials
Technological Properties of Epoxy-adhesive Systems
Cure and Thermal Softening Behavior of Epoxy Adhesives
7. Epoxy Resin Coatings

Classification of Epoxy-Resin Coatings

Epoxy Resins Commonly Used in Coatings

Epoxy-Resin Esters

Esters Produced from Solid Epoxy Resins

General Remarks

Formulation Latitude

Esters Produced from Liquid Epoxy Resins

Precatalyzed Liquid Epoxy Resin for the Production of Solid Epoxy Resins and Epoxy-Resin Esters

Cooking Procedure

“Two-Step” Liquid-Epoxy-Resin Route to Epoxy-Resin Esters

Cooking Procedure

Solid-Epoxy-Resin Solution Coatings

Cold-Cured Epoxy-Resin Systems

Polyamine Curing Agents

Polyamine-Adduct Curing Agents

Polyamide-Resin Curing Agents

Polyamide-Adduct Curing Agents

Tertiary Amine Curing Agents

Industrial Maintenance Coatings Based on Cold-Cured Epoxy-Resin Systems

High-Film-Build Cold-Cured Epoxy-Resin Coatings

Application Instructions
Manufacturing Instructions

Epoxy Baking Finishes

Epoxy-Phenolic Coating Systems

Epoxy-Urea-Formaldehyde Resin Coating Systems

Epoxy-Thermosetting Acrylic Coating Systems

Liquid Epoxy Resins in Solventless and Super-High-Solids Systems

Special Application Equipment and Formulation for Solventless Systems

Manufacturing Instructions

Application

Ketimine Curing Agents

Manufacturing Instructions

Application

Curing Characteristics

Powder Coatings

Application Equipment

Epoxy-Resin Powder-Coating Formulations

Fusion-Produced Epoxy-Resin Powders

Manufacturing Instructions

Applications Instructions

Dry-blended Epoxy-Resin Powders

Manufacturing Instructions

Application Instructions

Properties and Applications

Thermoplastic Epoxy Resins

Zinc-Rich and General Purpose Shop Primers

Manufacturing Instructions

Application Instructions
Manufacturing Instructions

Application Instructions

Thermoplastic-Epoxy-Resin Crosslinked Systems

Water-Reducible Epoxy Resin Coatings

Water-Reducible Epoxy-Ester Baking Finishes

Manufacturing Instructions

Application Instructions

Water-Reducible Polyamide-Cured Epoxy-Resin Coatings

Manufacturing Instructions

Manufacturing Instructions

Water-Reducible Epoxy-Resin Coatings for Electrodeposition

General Remarks

Maleinization Step After Complete Esterification of the Epoxy Resin with Organic Acids

Cooking Procedure

Application Instructions

8. Epoxy Coating Give into Water

9. Electrical and Electronic Applications : Sealants and Foams

Electronic and Electrical Applications

Introduction

Casting

Potting

Encapsulation

Coatings

Sealing
Molding
Formulation of the Resin System
Internal Stresses
Rapid Cures
Flexibilizing Epoxy Resins
Fillers
Reactive Diluents
Cycloaliphatic Epoxides
High-Temperature Epoxy-Resin Systems
Flame-Retardant Epoxy Resins
Colorless Epoxy Resins
Epoxy Formulations
Molding
Molding Compounds
Molding Technology
Liquid-Injection Molding
Pellets and Preforms
Epoxy Sealants
Epoxy Foams
Gas-Blown Foams
Syntactic Foams
One-Package Foams
Epoxy-Foam Applications
Epoxy Strippers
Handling of Epoxy Casting Systems

10. Analysis of Epoxides and Epoxy Resins
Uncured Epoxy Resins

Qualitative Tests

Detection of Free Epoxy Groups

Determination of Epoxy Group—Lithium-Chloride Test

Reagents

Procedure

Determination of Epoxy Group—Periodic Acid Test

Reagents

Procedure

Determination of Epoxy Group—Pyrolysis Test

Reagents

Procedure

Determination of Epoxy Group—Lepidine Test

Reagents

Procedure

Detection of the Bisphenol A Skeleton

Determination of Bisphenol A Epoxy Resins—Mercuric Oxide and Nitric Acid Tests

Reagents

Procedure

Determination of Bisphenol A Epoxy Resins in Coatings—Nitric Acid Test Reagents

Reagent

Procedure

Determination of Bisphenol A Epoxy Resins—Filter-Paper Test

Reagents

Procedure

Determination of Bisphenol A Epoxy Resin—Formaldehyde Test
Reagents
Procedure

Determination of Bisphenol A Epoxy Resins—Phenylenediamine Test
Reagent
Procedure

Detection of Epoxy Resins Based on 4,4'-Diamino-diphenylmethane

Determination of Epoxy Resins Based on 4,4'-Diaminodiphenylmethane
Reagents
Procedure

Detection of Other Epoxy Resins

Quantitative Tests of the Epoxy Group

Hydrohalogenation Methods

Estimation of Epoxy Group—Hydrochloric Acid in Dioxane, Methyl Ethyl Ketone, or Dimethylformamide
Reagents
Procedure

Calculations

Estimation of the Epoxy Group—Pyridinium Chloride in Pyridine
Reagents
Procedure

Hydrohalogenation by Direct Titration

Estimation of Epoxy Group
Reagents
Procedure

Calculations

Other Chemical Methods

Estimation of Other Functional Groups

Hydroxyl Group
a-Glycol Group
Estimation of a-Glycol Group
Reagents
Procedure
Calculation
Chlorine
Esterification Equivalent Weight
Estimation of Esterification Equivalent Weight
Reagents
Procedure
Calculation
Infrared Spectroscopy
Technique
Epoxide Absorption Bands
Epoxy Resins
Quantitative Estimation
Following the Degree of Cure
Other Physical Methods
Ultraviolet Spectroscopy
Electron Spin and Nuclear Magnetic Resonance Methods
Gas Chromatography
Paper Chromatography
Thin-Layer and Gel-Permeation Chromatography
Handling Properties
Molecular Weight
Softening Point
Viscosity
Color
Blends and Compounds
Hardeners and Accelerators
Organic Acid Anhydrides
Determination of Acid and Anhydride Content
Reagents
Procedure
Calculations
Amines
Determination of Amine Number
Reagents
Procedure
Calculation
The Curing Process
Curing Characteristics of Epoxy Resin-Hardener Systems
Determining the Degree of Cure
Analysis of Cured Epoxy Resins

11. The Toxicology of Epoxy Resins
 Introduction
 Experimental Method
 Materials
 Acute Toxicity
 Chronic Toxicity
 Irritation
 Sensitization
Results

Acute Toxicity

Chronic Toxicity

Irritation

Sensitization

Medical Experience with Epoxy Resins

Comment

About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.