Organic agriculture has grown out of the conscious efforts by inspired people to create the best possible relationship between the earth and men. After almost a century of neglect, organic agriculture is now finding place in the mainstream of development and shows great promise commercially, socially and environmentally. Integrated organic farming is a commonly and broadly used word to explain a more integrated approach to farming as compared to existing monoculture approaches. It refers to agricultural systems that integrate livestock and crop production and may sometimes be known as Integrated Bio systems. It denotes a holistic system of farming which optimizes productivity in a sustainable manner through creation of interdependent agri-eco systems where annual crop plants (e.g. wheat), perennial trees (e.g. horticulture) and animals (including fishes where relevant) are integrated on a given field or property .This concept of organic farming is based on following principles: 1. Nature is the best role model for farming, since it does not use any inputs nor demand unreasonable quantities of water.2. The entire system is based on intimate understanding of nature's ways of replenishment. The system does not believe in mining of the soil of its nutrients and do not degrade it in any way. 3. The soil in this system is considered as a living entity 4. The soil's living population of microbes and other organisms are significant contributors to its fertility on a sustained basis and must be protected and nurtured, at all cost. 5. The total environment of the soil, from soil structure to soil cover is more important and must be preserved.

Integrated Organic farming is a method of farming system, which primarily aims at cultivating the land and raising crops in such a way, so as to keep the soil alive and in good health. It is the use of organic wastes (crop, animal and farm wastes, aquatic wastes) and other biological materials, mostly produced insitu- along with beneficial microbes (bio fertilizers) to release nutrients to crops, which connotes the ‘organic’ nature of organic farming. It is also termed as organic agriculture. In the Indian context it is also termed as ‘Javik Krishi’. We have compiled all the relevant information regarding integrated organic farming in this book. This is first book of its kind which contains reliable details related to organic farming, green manuring, biological nitrogen fixation, uses of vermiculture bio-tech, organic fertilizers for flooded rice ecosystem, biological pest management, press mud as plant growth promoters, bio fertilizer for multipurpose tree species, rice- fish integration, response of crops to organic fertilizer and many more.

The book is very useful for farmers, agriculture, universities, consultants and research scholars.

Contents

1. NECESSITY OF ORGANIC FARMING
Management of Autonomous Ecosystem
Mixed Farming
Plants
Animals
Soils
Biosphere
Crop Rotation
Benefits of Crop Diversification
Organic Cycle Optimization
In Partnership with Nature
Basic Standards and General Principles for Organic Agriculture
Crop and Soil Management
Choice of Crops and Varieties
Crop Rotations
Fertilization Policy
Management of Pests, Diseases and Weeds
Wild Products
Pollution Control
Soil and Water Conservation
Landscape
Principle Requirements and Pre-conditions
Conversion from Conventional to Organic Farming
Farms with Plant Production and Livestock
Limitations
Initiating Organic Farming
Medicinal Plants-the First Crops for Organic Farming
Management of Permaculture Farm
Permaculture Farm
Use of Draft Animal
Making Permanent Farm
Conservation of Soil
Protection of the Soil against Fires
Protection from Water Erosion
Protection from Wind Erosion
Improvement of the Soil
How to Bury Organic Matter
Mixed Cropping
Permaculture for Wastelands
Soil and Water Conservation
Pioneers
Pioneer Trees and Plants
Secondary Species
Conclusion
2. GREEN MANURING—A BASIC COMPONENT OF
ORGANIC FARMING
Definition
Objectives of Green Manuring
Subsidiary Objective of Green Manures
Catch Crops
Shade Crops
Cover Crops
Forage Crops
Advantages of Green Manuring
Soil Structure and Tilth Improvement
Fertility Improvement of Soils
Amelioration of Soil Problems
Improvement in Crop Yield and Quality
Pest Control
Classification of Green Manures
Legumes
Non-Legumes
Characteristics Desirable in Legume Green Manure Crops
Leguminous Green Manures
Non-Conventional Green Manures
Other Green Manures
Choice of Green Manure Species
Forms of Green Manuring
Agronomy of Green Manure Crops
Sesbania Speciosa
Sesbania Aculeata (Dhaincha)
Sesbania Rostrata
Crotalaria Juncea (Sunnhemp)
Tephrosia Purpurea (Wild Indigo)
Indigofera Tinctoria
Calapogonium Mucunoides
Phaseolus Trilobus (Phillipesara)
Centrosema Pubescens
Macroptilium Atropurpureum (Siratoo)
Stylosanthes Hamata
Pueraria Phaseoloides (Kudzu)
Dolichos Lab Lab var. Lignosus
Agronomy of Green Leaf Manure Shrubs and Trees
Glyricidia (Glyricidia Maculata Syn. G. sepium)
Ipomoea Cornea
Cassia Auriculata
Derris Indica (Syn. Pongamia Glabra)
Azadirachta Indica (Neem)
Thespesia Populnea
Rhizobial Inoculation
Conditions for Fixation of Nitrogen
Bacterial Inoculation of Legumes
Stage of Incorporation
Time of Incorporation
Method of Application of Green Manure
Decomposition of Green Manure
Aerobic Decomposition
Changes in the Carbon Compounds
Changes in Nitrogen Compounds
Changes in the Mineral Constituents
Anaerobic Decomposition
Carbon Nitrogen Ratio on Decomposition Process
Farmer Acceptance of Green Manuring
Limitations in Raising Green Manure Crops
Conclusions
Future Needs
3. BIOLOGICAL NITROGEN FIXATION
Definition
Symbiotic and Non-Leguminous Symbiotic System
Azotobacter
Beijerinckia
Azospirillum
Application
Other Bacteria
Blue Green Algae
Multiplication
Trough Method
Pit Method
Field Method for Large Scale Production
Limitations
Azolla
Nursery
Azolla Application Methods
Green Manuring
As Dual Crop
Efficiency of Azolla
Limitations
Frankia
Legume-Rhizobium Symbiosis
Methods of Application
Seed Inoculation
Pelleting
Other Symbiotic Nitrogen Fixing Systems
Other Bioinoculants
Phosphate Solubilising Microorganisms (PSM)
Vesicular Arbuscular Mycorrhiza (VAM)
Inoculation Methods
Transplanted Crops
Direct Sown Crops
Seed Coating
Pelleting
Fluid Drilling
Furrow Inoculation
Precropping
Plant Growth Promoting Rhizobia (PGPR)
Conclusion
Future Needs
4. APPLICATION OF VERMICULTURE
 BIOTECHNOLOGY
Vermiculture Biotechnology
Earthworm for Nutrient Management
Effect on Soil Fertility
Nitrogen
Phosphorus
Potassium
Earthworms for Water Management
Earthworm Castings
Earthworms Act as Biopump
Earthworms for Effective Waste Management
Composting of Municipal and Industrial Wastes
Earthworms for Disease and Pest Management
Earthworms for Nutritional Crops
Earthworms for Sustainable Agriculture and Wasteland Development
Earthworms as Vectors of Beneficial Microorganisms
Successful Applications
Harnessing Vermiculture Biotechnology
Selection of Proper Species
Use of Vermicastings for Inoculation
Earthworms and Land Use Practices
Effect of Organic Manure and NPK Fertilizers on Earthworm Activity
Cultivation
Mulching
Irrigation
Biocides
Procedure to Prepare Vermicompost
Culturing Technique
Culture Bed
Feed Composition
Feed Application
Wormcast Production and Collection
Application of Vermicompost
Conclusion
Future Research Needs
5. ORGANIC FERTILIZERS FOR FLOODED RICE ECOSYSTEM
Azolla
Growth and N-Fixation
Factors Affecting Growth and N-Fixation
Management Practices
Impact on Rice Yield and Soil Fertility
Economic Aspects
Suitable Agroclimatic Conditions
Adoption Constraints and Future Research Needs
Blue-Green Algae (BGA)
Nitrogen Fixing Potential and N-input
Factors Affecting Growth and N-fixation
Management Practices
Impact on Rice Yield and Soil Fertility
Economic Aspects
Suitable Agroclimatic Conditions
Adoption Constraints and Future Research Needs
Conclusions
6. PHOSPHATE SOLUBILIZING MICROORGANISMS : FUNGI AND BACTERIA
Problems in Phosphorus Uptake
Phosphate Fixation in Different Soils
Historical Developments
Phosphate Solubilization
Factors Affecting Phosphate Solubilization
Isolation
Mechanisms of Action
Role of Acids
Other Mechanisms
Effect on Crop Yield
7. PHOSPHATE SOLUBILIZING MICROORGANISMS : MYCORRHIZAE
Mycorrhizal Types and Their Structural and Nutritional Features
Ectomycorrhizae
Mechanism of ECM Formation
Morphology and Structure
Synthesis of Mycorrhiza
Cultural Study
Vesicular Arbuscular Mycorrhiza
Introduction
Evolution
Taxonomy
Classification
Distribution
Lifecycle
Reproduction
Sexual Reproduction
Asexual Reproduction
Method of Inoculum Production of VAM
Some Important Steps in Production of VAM
Host Plant/Growth Medium
Fertilizations/Micronutrients
Chemical Application
Control of Fungal Pathogens
Plant-Vesicular Arbuscular Mycorrhizal Fungal Interactions
Vam and Soil Biota
Control of Root Diseases
Endomycorrhiza and Plant Disease
Ectomycorrhizal Fungi and Tree Diseases
Mechanism of Disease Control
Outlook
8. APPLICATION AND EVALUATION
Different Methods for Biofertilizer Inoculation
Seed Inoculation
Top Dressing of Biofertilizers
Granular Biofertilizers
Solarisation of FYM/Compost
Granular Biofertilizer Mixed with Seed
Broadcasting of Granular Biofertilizers
Frequency of Inoculation
Liquid Inoculation of Biofertilizers
Methods of Application of Liquid Inoculation
Drenching By Sprayers
Application in Root Zone
Culture Pellet
Methods of Application of Other Biofertilizers
Blue Green Algae
Azolla
As Green Manuring
Azolla Dual Cropping
Azotobacter
Preparation and Use of Azotobacter Inoculant
Application
Azospirillum
Mycorrhizae
Endomycorrhizae
Ectomycorrhizae
Techniques for Isolation of Vesicular Arbuscular Mycorrhizal Fungi (VAMF) from Soil in Laboratory
Gerdemann and Nicolson Technique
Sutton and Barron Flotation Technique
Method for Examination of Mycorrhizal Infection in Root Samples
Foliar Biofertilizer
Humar
Humic Acid
Introduction
Application
Soil
Foliar
Seed Treatment
Soil Benefit
Root
Seeds
Plants
Precautions
Different Media Used to Study Biofertilizer
I. Growth Media for Rhizobium
Media for Testing Nodulating Ability of Rhizobium
Jenson's Plant Nutrient
II. Isolation Of Frankia
III. Selective Media For Blue Green Algae
IV. Selective MEDIA For Azotobacter
V. Selective Media for Azospirillum
VI. Selective Media for Phosphate solubilizing organisms
VII. Selective Medium for isolation of Pseudomonas fluorescens, a biocontrol agent (Subba Rao, 1986).
VIII. Selective medium for isolation of Trichoderma - an antagonistic fungus.

9. BIOLOGICAL PEST MANAGEMENT
Cultural Control
Sanitation
Tillage
Application of Manures and Soil Amendments
Habitat Diversification
Crop Rotation
Trap Cropping
Intercropping
Strip Farming
Time of Planting
Water Management
Crop Competition
Physical and Mechanical Control
Manual Control
Burning
Solarization
Floodling
Biological Control
Conservation of Biodiversity
Conservation of Natural Enemies
Biopesticides
Botanicals
Host Resistance
Increasing the Effectiveness of Bio-control
Autocidal Control
Bheavioural Control
Pheromones
Fairomones
Success Rate of Ecological Management
Other Related Approach
Integrated Pest Management
Biologically Intensive Pest Control (BIPM)
Success with Biological Control
Rice
Sugarcane
Tomato
Tobacco
Cotton
Horticultural and Plantation Crops
Future Thrust
Conclusions
10. PRESSMUD AS PLANT GROWTH PROMOTER
Material and Methods
Results and Discussion
11. BIOFERTILIZER FOR MULTIPURPOSE TREE SPECIES
Material and Methods
Species
Inoculum Preparation
Treatment
Preparation of Soil-Vermiculite Mixture
Inoculation of Acacia Nilotica
Inoculation of Eucalyptus Hybrid
Results
Discussion
Summary
12. TREE LEGUMES TO BIOINOCULATION OF ENDOMYCORRHIZAE
Material and Methods
Results and Discussion
Summary
13. GROWTH RESPONSE OF CAJANUS CAJAN TO Glomus aggregatum with Cement Dust Amendments
Material and Methods
Results
Infecitivity
Efficacy
Discussion
Summary
14. SALINE SOIL TOLERANCE OF SAPINDUS EMARGINATUS
Material and Methods
Results and Discussion
15. SELF SUSTAINABILITY OF ORGANIC FARMING

Self Sustainable System
Design of Self-Sustainable Agro-Ecosystems
Ecological Processes to Optimize in Agro-Ecosystems
Mechanisms to Improve Agro-Ecosystem Immunity
Peripherals for Self-Sustainability
Bio-Diversified Agro-Ecosystems
Crop Rotations
Polycultures
Agroforestry Systems
Cover Crops
Animal Integration
Integration of Livestock
Integration of Aquaculture
Indigenous Organic Farming Practices
Soil and Water Conservation
Arable Land Management
Agronomical Measures
Wind Erosion Control
Water Erosion Control Measures
Engineering Measures
Non-Arable and Denuded Land Management
Rain Water Conservation
Mulches
Essentiality of Mulching
Mulch and Microlife Activities
Activity of Earthworm
Weed Suppression
Birds and Mulch Disturbance
Mulch and Retention of Moisture
Increase in Crop Yield
Control of Temperature
Protection Soil Against Erosion
Control of Pest and Disease
Appearance
Drawbacks of Mulching
Types of Mulch
Loose Organic and Non Organic Mulches
Vertical Mulch
Live Vegetative Barriers
Agroforestry/Alternate Land Use Systems
Basic Principles
Types of Agroforestry Systems
Alley farming
Ley farming
Silvipasture
Agri-Horticulture
Windbreaks and Shelterbelts
Interactions Between Trees and Crops
Useful for Organic Farming
Effects of Trees on Soils
Beneficial Effect
Soil Conservation
Soil Fertility
Management of Adverse Effects of Trees
Management of Agroforestry for Organic Farming
Conclusion

16. RICE ECOSYSTEM
Rice Ecosystems of Kerala
Midland and Malayoram Rice Ecosystem
Chittoor Black Soil
Irrigated Rice Ecosystem
Onattukara
Kuttanad
Karilands
Karappadam Soils
Kayal Lands
Kole Lands
The Coastal Saline Rice Eco Systems
High Range Rice Eco System
Koottumundakan System

17. “POKKALI”—WORLD ACCLAIMED FARMING SYSTEM MODEL
Climate
Crops and Crop Season
Reclamation of Saline Soils
Varieties
Seeds and Sowing
Seedling Establishment and Aftercare
Rice-fish/prawn integration in Pokkali fields
Selective Culture of Prawn
Rice Cum Fish Culture
Sustainable Farming System

18. NEEM : THE BEST EXAMPLE FOR ORGANIC FARMING
Uses of Neem
Neem for Pest Control
Limonoids
Azadirachtin
Meliantriol
Salannin
Nimbin and Nimbidin
Others
Mode of Action
Effectiveness
Good Control
Moderate Control
Poor Control
Nontarget Species
Earthworms
Beneficial Insects
Preparations for Pest Control
Methods of Application
Water Extraction
Hexane Extraction
Pentane Extraction
Alcohol Extraction
Formulations
Additives
Practical Methods for Preparations
Control of Stored Grain Pest
Uses of Neem Extract
Preparing Crushed Neem Seed
Neem to Control Stem Borers on Young Plants
Extracting Neem Oil
Controlling Bruchid Beetles in Stored Beans
Control of Soil-Borne Pests
Neem Water Extract for Plant Protection
Water based Neem Spray to Control Cutworms
Success Stories
Desert Locust
Cockroach
Brown Planthopper
Stored-Product Insects
Armyworm
Mosquitoes
Aphids
Fruit Flies
Nematodes
Snails
Crustaceans
Fungi
Aflatoxin
Plant Viruses
Propagation and Planting of Neem
Climatic Requirements
Rainfall
Temperature
Raising Seedlings
Transplanting
Conclusions
19. RICE-FISH INTEGRATION : A WIN-WIN FARMING MODEL
Externalities of Green Revolution
Lowland Rice Ecologies
Diversification—IFS Approaches
Vanishing Rice Lands—Economic Sustainability Issues
Pokkali System-the Classic Example
Rice-Fish, Harnessing Complementarities
Group Fish Farming (GFF)
Environmental Superiority
Economic Sustainability
Win-Win Land Use Model
20. RICE SOILS IN COASTAL—AREA SUSTAINABLE
SOIL NUTRIENT IN ORGANIC RICE FARMING
Organic Farming—the Truths vs. Myths
Organics as a Source of Plant Nutrients
Organic Farming and Food Security
Organic Farming—A Lesson from China
21. UTILIZATION OF BENEFICIAL MICROORGANISMS FOR SUSTAINABLE ORGANIC RICE PRODUCTION

Biological Nitrogen Fixers
Legume - Rhizobium symbiosis
Azospirillum

Different Methods of Application of Azospirillum in the Field
Cyanobacteria (Blue Green Algae - BGA)
Mass Production of BGA in the Field
Anabaena - Azolla Symbiosis
Utilization of Azolla for Rice
Mass Production of Azolla in the Field
Phosphorus Solubilising Microorganisms
Arbuscular Mucorrhizal Fungi (AMF)
Silicate Solubilising Bacteria
Zinc Solubilising Bacteria
Plant Growth Promoting Rhizobacteria (PGPR)
Efficacy of PGPR in Rice
Methods of Application of Pseudomonas Fluorescens in Rice
Microbial Consortium for Rice

22. BIOGAS POTENTIAL FROM WASTES AND ITS VALUE

Manurial Value of Digested Slurry

23. RECYCLING OF ORGANIC MATERIALS AS ORGANIC FERTILIZERS

Direct Incorporation of Organic Materials in Soil and Their Effects
Maintenance of Organic Matter in Indian Soils
Effect of Organic Matter on Soil Microorganisms
Organic Mulch
Effect of Crop Residues on Yield of Legume Crops
Effect of Straw, Neem Cake and Farmyard Manure on Yield of Maize Crop
Effect of Incorporation of Organic Matter on Paddy Crop
Influence of Humic Substances on Crop Yields

24. RESPONSE OF CROPS TO ORGANIC FERTILIZERS

Farmyard Manure and Compost
Oil-Cakes
Long-Term Effect of Organic Manures
Effect of Organic Manures in Rotation
Manurial Requirements of a Fixed Crop Rotation
Rice-Wheat Rotation
Rice-Rice Rotation
Maize-Wheat Rotation
Jowar-Wheat Rotation
Bajra-Wheat Rotation
Rotation-Jowar in Kharif-Bajra in Rabi
Response of Crops to Bone-Meal

About NIIR
NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

NIIR PROJECT CONSULTANCY SERVICES, 106-E, Kamla Nagar, New Delhi-110007, India. Email: npcs.india@gmail.com Website: NIIR.org