Resins, gums and latex are almost ubiquitous in the plant kingdom and many of them continue to play an important role in our daily lives. Numerous plants produce some kind of resin, latex or gum, but only a few are commercially important today, even though their uses and applications are truly manifold. They have been used as adhesives, emulsifiers, thickening agents, they are added to varnishes, paints and ink; they lend their aromas to perfumes and cosmetics and even play a role in pharmacy and medicine. Gums are viscous substances which are secreted by the bark of certain trees. Usually transparent (but sometimes slightly tinted) they contain a mucilage which when dissolved in water makes the latter become viscous. When this mucilage is dissolved in water it can be made to precipitate with alcohol. Resins, on the other hand, are gluey and viscous substances which may be whitish, brownish, or red and are secreted by certain trees when they are incised. Resins contain an essence and are usually not water soluble. Most commonly found types of plant exudates are chemically completely different to gums. Several acacia species are important economically. True gums are complex organic substances mostly obtained from plants, some of which are soluble in water and others of which, although insoluble in water, swell up by absorbing large quantities of it. They are used in adhesives, pharmaceuticals, inks, confections, and other products. Resins are terpene based compounds. Terpenes constitute one of the largest groups of plant chemicals and they can be very complex. They are not water soluble, but can be either oil soluble or spirit soluble, depending on their specific chemical composition. Worldwide interest and activity in gums and resins has grown dramatically in the last few years. Governments, environmentalists, research institutions and other interest groups are among those who have begun to push for stronger support for gums and resins as a way to meet a range of economic, social and environmental goals.

Some of the fundamentals of the book are photosynthesis and metabolism of carbohydrates, occurrence, properties and synthesis of the monosaccharides, nitrogen derivatives, carbohydrates in parenteral nutrition, essential carbohydrates, ethers, anhydro sugars and unsaturated derivatives, constitution of nicotinic acid and of nicotinamide, industrial methods of preparing nicotinic acid and nicotinamide, general physiology, metabolism and mechanism of the vitamin action etc.

This book gives a complete insight of water soluble gums and resins that are used in day to day life in various
Industries. It is an invaluable resource to all its readers, students, scientists, new entrepreneurs, existing industries and others.

Contents

1. CARBOHYDRATES
 1. PHOTOSYNTHESIS AND METABOLISM OF CARBOHYDRATES
 - Photosynthesis
 - Introduction
 - Structural Aspects of the Photosynthetic Apparatus
 - Kinetic Studies on Photosynthesis
 - Bacterial Photosynthesis
 - The Hill Reaction
 - The Path of Carbon in Photosynthesis
 - The Biosynthesis of Carbohydrates by Plants
 - Monosaccharides
 - Oligosaccharides
 - Starch
 - Sugar Alcohols
 - Sugar Acids
 - Carbohydrate Biochemistry
 - Pathways for the Metabolism of Carbohydrates
 - Interconversion of the Sugars

2. OCCURRENCE, PROPERTIES AND SYNTHESIS OF THE MONOSACCHARIDES
 - Naturally Occurring Monosaccharides
 - Origin and Preparation of Some Naturally Occurring Monosaccharides
 - Synthetic Sugars
 - Complete Synthesis of the Sugars
 - Methods for Lengthening the Carbon Chain of the Sugars
 - Methods for Shortening the Carbon Chain of Sugars
 - Methods Based on Changing the Configuration of Other Sugars
 - Methods for the Synthesis of Deoxysugars
 - Preparation of Ketoses by Biochemical Oxidation of Alcohols
 - Aldose to Ketose Conversion Utilizing the Osones
 - Methods for Isotope-Labeled Sugars

3. OLIGOSACCHARIDES
 - Synthesis of Oligosaccharides
 - Rearrangement and Degradation of Oligosaccharides
 - Condensation of Two Monosaccharide Units
 - Determination of Structure
 - Ease of Acid Hydrolysis
 - Preparation, Properties, and Structures of Some Oligosaccharides of Natural Origin
 - Miscellaneous Disaccharides
 - Tri-, Tetra-, and Pentasaccharides
 - Miscellaneous Tri- and Tetrasaccharides
 - Enzymic Synthesis of Oligosaccharides
 - Synthesis of Sucrose by the Mechanism of Phosphorolysis
 - Synthesis of Analogs of Sucrose and Maltose by Sucrose and Maltose Phosphorylases
 - Synthesis of Disaccharides by Transglycosidation Through the Action of Sucrose Phosphorylase
Synthesis of Oligosaccharides by Transglycosidation Through the Action of Hydrolytic Enzymes

Miscellaneous Oligosaccharides

4. NITROGEN DERIVATIVES

Glycosylamines, Nucleic Acids and Hydrolysis Products, Hydrazones, Osazones, Oximes, Amino Sugars, etc.

Glycosylamines
Unsubstituted Glycosylamines
N-Substituted Glycosylamines
Nucleotides
Preparation and Structures
Nucleoside Di- and Triphosphoric Acids
Biologically Important Substances Related to Nucleotides
Nucleic Acids
Combinations of Sugars with Amino Acids and Proteins
Preparation
Protein-Carbohydrate Compounds as Synthetic Antigens
Reactions of the Sugars with Substituted Hydrazines and Hydroxylamine
Hydrazones and Osazones
Comparison or Weygand-Reckhaus and Bloink-Pausacker Mechanisms
Oximes
Derivatives in which an Amino Group Replaces a Primary or Secondary Hydroxyl Group
Amino Sugars (Glycosamines)
Glycamines and Aminodeoxyalditols

5. ROLE OF CARBOHYDRATES IN DENTAL CARIES

Dietary Carbohydrates in Diabetes and Nutrition
Carbohydrate Sweeteners in Nutrition: Fact and Fantasy
Consumption
Cost
Acceptability
Safety
Availability, Convenience, Quality

6. CARBOHYDRATES IN NUTRITION

General Aspects
Caloric Value
Digestion and Absorption
Starches
Dextrins
Maltose
Sucrose
D-glucose (Dextrose)
D-fructose (Levulose)
D-Mannose
D-galactose and Lactose
Lactose and the Microflora of the Digestive Tract
α-Lactose vs. β-Lactose
C. Influence of the Glycosidic Linkage on the Utilization of Lactose
Adaptation to Lactose Ingestion
Laxative Action of Lactose
Cataractogenic Action of Lactose
Galactosemia Associated with Cataracts in Humans
Lactose and Calcium Metabolism
Cellobiose
Rare Sugars
Xylose Toxicity
Sugar Alcohols (Alditols)
Hexosamines
Cellulose and Related Substances
Sweetness and Flavoring Characteristics of Sugars
Appetite for Carbohydrate
Blood Glucose and the Urge to Eat
Synthesis of Vitamins by the Intestinal Microflora
Protein Sparing Action
Sugar in Candy and Carbonated Beverages
Carbohydrates and Weight Control
Carbohydrates in Parenteral Nutrition
7. ESSENTIAL CARBOHYDRATES
The Active Compounds and Their Properties
Pathological States Caused by a Deficiency of the Active Compounds
Specificity Studies
The Physiological Action of the Active Compounds
Requirements
8. INOSITOL
Nomenclature
Names
Chemical formula
Empirical Formula
Occurrence
Isolation
Properties
Chemistry
Industrial Methods of Preparation
Biogenesis
Specificity
Determination
Physiology of Plants and Microorganisms
Animal Physiology
Avitaminosis
Hypervitaminosis
Requirements
9. ETHERS, ANHYDRO SUGARS AND UNSATURATED DERIVATIVES
Ether Derivatives (External)
Alkylation Methods
Trityl Derivatives
Anhydro Derivatives
Methods of Preparation
Reactions of Anhydro Sugars
 Unsaturated Derivatives
Glycals
Glycoses and Alditoleens
10. PANTOTHENIC ACID
Nomenclature and Survey
Names
Probably also identical with
Empirical formula
Structural formula
Determination of Polymer Composition
Determination of Carbohydrate Composition
Determination of Noncarbohydrate Impurities
Determination of Physical Properties
End-use Tests

2. DERIVATIVES OF CELLULOSE
Analysis of Cellulose Derivatives
Cellulose Nitrate
Properties
Methods of Manufacture
Methods of Analysis
Cellulose Acetate
Methods of Analysis
Cellulose acetate Butyrate and Cellulose Acetate Propionate
Properties
Methods of Analysis
Cellulose acetate
Properties
Methods of Manufacture
Methods of Analysis
Methods of Manufacture
Methods of Analysis
Ethylcellulose
Properties
Methods of Manufacture
Methods of Analysis
Methylcellulose and Its Derivatives
Properties
Methods of Manufacture
Methods of Analysis
Methods of Manufacture
Methods of Analysis
Hydroxyethylcellulose and Its Derivatives
Properties
Methods of Manufacture
Methods of Analysis
Sodium Carboxymethylcellulose
Properties
Methods of Manufacture
Commercial Grades and Specifications
Methods of Analysis

3. STRUCTURE AND MECHANICAL PROPERTIES OF CELLULOSE
Fine Structure
Internal Appearance of Fibres
Crystallinity
Orientation
Micellar and Intermicellar Structure
Mechanical Properties
Experimental Work
Correlation between Fine Structure and Mechanical Properties
Effect of Moisture

4. DECRYSTALLIZATION OF COTTON CELLULOSE
Methods of Decrystallization
Stability of Decrystallization
Effect of Decrystallization on the Properties of the Fibre
Mechanism of Amine Treatment

5. EFFECT OF CELLULOSE STRUCTURE ON TENSILE PROPERTIES OF COTTON
Degree of Crystallinity
Degree of Fibrillar Orientation
Measurement of Orientation
Effect of Orientation on Tensile Properties
Degree of Polymerization
Determination of D.P.
Effect of D.P. on Physical Properties

6. CREASE RESISTANCE OF CELLULOSIC TEXTILES
IN RELATION TO FABRIC GEOMETRY
Poor Recovery in Cotton Fabrics
Background
Effect of Fabric Construction on Crease Recovery
Conclusion

7. MERCERIZED COTTON FIBRES
Preparation of Samples
Measurement of Crystalline Orientation
Mechanical Behaviour

8. ALKALI-SENSITIVE LINKAGES IN IRRADIATED
CELLULOSE
Materials and Methods
Results and Discussion

9. HYDRATED OXIDES AS BARRIERS AGAINST
ACTINIC DEGRADATION OF CELLULOSE
Experimental Procedure
Results and Discussion

10. HYDRATED OXIDES AS BARRIERS AGAINST
CELLULOSE DEGRADATION BY ULTRA-VIOLET IRRADIATION
Experimental Procedure
Results and Discussion

11. SODIUM METAPERIODATE OXIDATION OF
CELLULOSE AND CELLOBIOSE
Experimental Procedure
Oxidation of Cellobiose
Preparation of Derivatives
Oxidation of Cellulose
Discussion
Summary

12. BIOSYNTHESIS OF CELLULOSE
Synthesis in Cotton Plant
Russian Work
Cellulose Accumulation in Cotton Boll and Fibre
American Work
Microorganisms

13. REACTIONS OF CELLULOSE WITH CROSS
LINKING AGENTS

14. CHEMICAL MODIFICATION OF TEXTILE
CELLULOSE
Structure of Cellulose
Properties of Textile Cellulose
Elongation and Elastic Properties
Flex Life, Tear Strength and Wear Life
Wet Strength, Dimensional Stability, Wash and Crease-resistance and Drape
Bulk Density and Warmth
Lustre
Slipperiness and Resistance to Clinging
Resistance to Soilage
Permeability
Water Repellency, Absorbency, Quick Drying, Electrical Insulation and Dye-receptivity
Mildew and Rot resistance
Heat and Flame Resistance
Ion-exchange Properties
15. CELLULOSE ETHERS
Hydroxyethyl Cellulose
Work at Shri Ram Institute
16. ANTI-CREASE AND ANTI-SHRINK FINISHES FOR VISCOS RAYONS
Resin Finishes and Formaldehyde Treatment
Sririset Process
Development
Outline of the Process
Properties of Treated Fabrics
Equipment
Large Scale Trials
Some Advantages
Cost of treatment
17. MICROBIAL DECOMPOSITION OF CELLULOSE WITH SPECIAL REFERENCE TO COTTON AND COTTON FABRICS
18. ROLE OF MOISTURE IN HEAT TREATMENT OF RESIN-TREATED CELLULOSIC TEXTILES
Fibre Properties and Moisture Content
Modification of Fibre Properties During Heat Treatment
Temperature and Moisture Content
Migration of Solutes and Solvents during Heat Treatment Summary

About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.
Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs are often faced with the dilemma of zeroing in on a suitable product/line.