

Integrated Organic Farming Handbook

Author:- Dr. H. Panda

Format: paperback

Code: NI248

Pages: 472

Price: Rs.1275US\$ 33.95

Publisher: NIIR PROJECT CONSULTANCY SERVICES

Usually ships within 5 days

Organic agriculture has grown out of the conscious efforts by inspired people to create the best possible relationship between the earth and men. After almost a century of neglect, organic agriculture is now finding place in the mainstream of development and shows great promise commercially, socially and environmentally. Integrated organic farming is a commonly and broadly used word to explain a more integrated approach to farming as compared to existing monoculture approaches. It refers to agricultural systems that integrate livestock and crop production and may sometimes be known as Integrated Bio systems. It denotes a holistic system of farming which optimizes productivity in a sustainable manner through creation of interdependent agri-eco systems where annual crop plants (e.g. wheat), perennial trees (e.g. horticulture) and animals (including fishes where relevant) are integrated on a given field or property .This concept of organic farming is based on following principles: 1. Nature is the best role model for farming, since it does not use any inputs nor demand unreasonable quantities of water.2. The entire system is based on intimate understanding of nature's ways of replenishment. The system does not believe in mining of the soil of its nutrients and do not degrade it in any way. 3. The soil in this system is considered as a living entity 4. The soil's living population of microbes and other organisms are significant contributors to its fertility on a sustained basis and must be protected and nurtured, at all cost. 5. The total environment of the soil, from soil structure to soil cover is more important and must be preserved.

Integrated Organic farming is a method of farming system, which primarily aims at cultivating the land and raising crops in such a way, so as to keep the soil alive and in good health. It is the use of organic wastes (crop, animal and farm wastes, aquatic wastes) and other biological materials, mostly produced insitu- along with beneficial microbes (bio fertilizers) to release nutrients to crops, which connotes the 'organic' nature of organic farming. It is also termed as organic agriculture. In the Indian context it is also termed as 'Javik Krishi'. We have compiled all the relevant information regarding integrated organic farming in this book. This is first book of its kind which contains reliable details related to organic farming, green manuring, biological nitrogen fixation, uses of vermiculture bio-tech, organic fertilizers for flooded rice ecosystem, biological pest management, press mud as plant growth promoters, bio fertilizer for multipurpose tree species, rice- fish integration, response of crops to organic fertilizer and many more.

The book is very useful for farmers, agriculture, universities, consultants and research scholars.

1. NECESSITY OF ORGANIC FARMING

Management of Autonomous Ecosystem
Mixed Farming

Plants
Animals
Soils
Biosphere
Crop Rotation
Benefits of Crop Diversification
Organic Cycle Optimization
In Partnership with Nature
Basic Standards and General Principles for Organic Agriculture
Crop and Soil Management
Choice of Crops and Varieties
Crop Rotations
Fertilization Policy
Management of Pests, Diseases and Weeds
Wild Products
Pollution Control
Soil and Water Conservation
Landscape
Principle Requirements and Pre-conditions
Conversion from Conventional to Organic Farming
Farms with Plant Production and Livestock
Limitations
Initiating Organic Farming
Medicinal Plants-the First Crops for Organic Farming
Management of Permaculture Farm
Permaculture Farm
Use of Draft Animal
Making Permanent Farm
Conservation of Soil
Protection of the Soil against Fires
Protection from Water Erosion
Protection from Wind Erosion
Improvement of the Soil
How to Bury Organic Matter
Mixed Cropping
Permaculture for Wastelands
Soil and Water Conservation
Pioneers
Pioneer Trees and Plants
Secondary Species
Conclusion

2. GREEN MANURING—A BASIC COMPONENT OF ORGANIC FARMING

Definition
Objectives of Green Manuring
Subsidiary Objective of Green Manures
Catch Crops
Shade Crops
Cover Crops
Forage Crops
Advantages of Green Manuring
Soil Structure and Tilth Improvement
Fertility Improvement of Soils

Amelioration of Soil Problems
Improvement in Crop Yield and Quality
Pest Control
Classification of Green Manures
Legumes
Non-Legumes
Characteristics Desirable in Legume Green Manure Crops
Leguminous Green Manures
Non-Conventional Green Manures
Other Green Manures
Choice of Green Manure Species
Forms of Green Manuring
Agronomy of Green Manure Crops
Sesbania Speciosa
Sesbania Aculeata {Dhaincha}
Sesbania Rostrata
Crotalaria Juncea (Sunnhemp)
Tephrosia Purpurea (Wild Indigo)
Indigofera Tinctoria
Calopogonium Mucunoides
Phaseolus Trilobus (Phillipesara)
Centrosema Pubescens
Macroptilium Atropurpureum (Siratoo)
Stylosanthes Hamata
Pueraria Phaseoloides (Kudzu)
Dolichos Lab Lab var. Lignosus
Agronomy of Green Leaf Manure Shrubs and Trees
Glyricidia (Glyricidia Maculata Syn. G. sepium)
Ipomoea Cornea
Cassia Auriculata
Derris Indica (Syn. Pongamia Glabra)
Azadirachta Indica (Neem)
Thespesia Populnea
Rhizobial Inoculation
Conditions for Fixation of Nitrogen
Bacterial Inoculation of Legumes
Stage of Incorporation
Time of Incorporation
Method of Application of Green Manure
Decomposition of Green Manure
Aerobic Decomposition
Changes in the Carbon Compounds
Changes in Nitrogen Compounds
Changes in the Mineral Constituents
Anaerobic Decomposition
Carbon Nitrogen Ratio on Decomposition Process
Farmer Acceptance of Green Manuring
Limitations in Raising Green Manure Crops
Conclusions
Future Needs

3. BIOLOGICAL NITROGEN FIXATION

Definition
Symbiotic and Non-Leguminous Symbiotic System

Azotobacter
Beijerinckia
Azospirillum
Application
Other Bacteria
Blue Green Algae
Multiplication
Trough Method
Pit Method
Field Method for Large Scale Production
Limitations
Azolla
Nursery
Azolla Application Methods
Green Manuring
As Dual Crop
Efficiency of Azolla
Limitations
Frankia
Legume-Rhizobium Symbiosis
Methods of Application
Seed Inoculation
Pelleting
Other Symbiotic Nitrogen Fixing Systems
Other Bioinoculants
Phosphate Solubilising Microorganisms (PSM)
Vesicular Arbuscular Mycorrhiza (VAM)
Inoculation Methods
Transplanted Crops
Direct Sown Crops
Seed Coating
Pelleting
Fluid Drilling
Furrow Inoculation
Precropping
Plant Growth Promoting Rhizobia (PGPR)
Conclusion
Future Needs

4. APPLICATION OF VERMICULTURE BIOTECHNOLOGY

Vermiculture Biotechnology
Earthworm for Nutrient Management
Effect on Soil Fertility
Nitrogen
Phosphorus
Potassium
Earthworms for Water Management
Earthworm Castings
Earthworms Act as Biopump
Earthworms for Effective Waste Management
Composting of Municipal and Industrial Wastes
Earthworms for Disease and Pest Management
Earthworms for Nutritional Crops

Earthworms for Sustainable Agriculture and Wasteland Development

Earthworms as Vectors of Beneficial Microorganisms

Successful Applications

Harnessing Vermiculture Biotechnology

Selection of Proper Species

Use of Vermicastings for Inoculation

Earthworms and Land Use Practices

Effect of Organic Manure and NPK Fertilizers on Earthworm Activity

Cultivation

Mulching

Irrigation

Biocides

Procedure to Prepare Vermicompost

Culturing Technique

Culture Bed

Feed Composition

Feed Application

Wormcast Production and Collection

Application of Vermicompost

Conclusion

Future Research Needs

5. ORGANIC FERTILIZERS FOR FLOODED RICE ECOSYSTEM

ECOSYSTEM

Azolla

Growth and N-Fixation

Factors Affecting Growth and N-Fixation

Management Practices

Impact on Rice Yield and Soil Fertility

Economic Aspects

Suitable Agroclimatic Conditions

Adoption Constraints and Future Research Needs

Blue-Green Algae (BGA)

Nitrogen Fixing Potential and N-input

Factors Affecting Growth and N-fixation

Management Practices

Impact on Rice Yield and Soil Fertility

Economic Aspects

Suitable Agroclimatic Conditions

Adoption Constraints and Future Research Needs

Conclusions

6. PHOSPHATE SOLUBILIZING MICROORGANISMS :

FUNGI AND BACTERIA

Problems in Phosphorus Uptake

Phosphate Fixation in Different Soils

Historical Developments

Phosphate Solubilization

Factors Affecting Phosphate Solubilization

Isolation

Mechanisms of Action

Role of Acids

Other Mechanisms

Effect on Crop Yield

7. PHOSPHATE SOLUBILIZING MICROORGANISMS :

MYCORRHIZAE

Mycorrhizal Types and Their Structural and Nutritional Features

Ectomycorrhizae

Mechanism of ECM Formation

Morphology and Structure

Synthesis of Mycorrhiza

Cultural Study

Vesicular Arbuscular Mycorrhiza

Introduction

Evolution

Taxonomy

Classification

Distribution

Lifecycle

Reproduction

Sexual Reproduction

Asexual Reproduction

Method of Inoculum Production of VAM

Some Important Steps in Production of VAM

Host Plant/Growth Medium

Fertilizations/Micronutrients

Chemical Application

Control of Fungal Pathogens

Plant-Vesicular Arbuscular Mycorrhizal Fungal Interactions

Vam and Soil Biota

Control of Root Diseases

Endomycorrhiza and Plant Disease

Ectomycorrhizal Fungi and Tree Diseases

Mechanism of Disease Control

Outlook

8. APPLICATION AND EVALUATION

Different Methods for Biofertilizer Inoculation

Seed Inoculation

Top Dressing of Biofertilizers

Granular Biofertilizers

Solarisation of FYM/Compost

Granular Biofertilizer Mixed with Seed

Broadcasting of Granular Biofertilizers

Frequency of Inoculation

Liquid Inoculation of Biofertilizers

Methods of Application of Liquid Inoculation

Drenching By Sprayers

Application in Root Zone

Culture Pellet

Methods of Application of Other Biofertilizers

Blue Green Algae

Azolla

As Green Manuring

Azolla Dual Cropping

Azotobacter

Preparation and Use of Azotobacter Inoculant

Application

Azospirillum

Mycorrhizae
Endomycorrhizae
Ectomycorrhizae
Techniques for Isolation of Vesicular Arbuscular Mycorrhizal Fungi (VAMF) from Soil in Laboratory
Gerdemann and Nicolson Technique
Sutton and Barron Flotation Technique
Method for Examination of Mycorrhizal Infection in Root Samples
Foliar Biofertilizer
Humic
Humic Acid
Introduction
Application
Soil
Foliar
Seed Treatment
Soil Benefit
Root
Seeds
Plants
Precautions
Different Media Used to Study Biofertilizer
I. Growth Media for Rhizobium
Media for Testing Nodulating Ability of Rhizobium
Jenson's Plant Nutrient
II. Isolation Of Frankia
III. Selective Media For Blue Green Algae
IV. Selective MEDIA For Azotobacter
V. Selective Media for Azospirillum
VI. Selective Media for Phosphate solubilizing organisms
VII. Selective Medium for isolation of Pseudomonas fluorescens, a biocontrol agent (Subba Rao, 1986).
VIII. Selective medium for isolation of Trichoderma - an antagonistic fungus.
9. BIOLOGICAL PEST MANAGEMENT
Cultural Control
Sanitation
Tillage
Application of Manures and Soil Amendments
Habitat Diversification
Crop Rotation
Trap Cropping
Intercropping
Strip Farming
Time of Planting
Water Management
Crop Competition
Physical and Mechanical Control
Manual Control
Burning
Solarization
Flooding
Biological Control
Conservation of Biodiversity

Conservation of Natural Enemies

Biopesticides

Botanicals

Host Resistance

Increasing the Effectiveness of Bio-control

Autocidal Control

Bheavioural Control

Pheromones

Fairomones

Success Rate of Ecological Management

Other Related Approach

Integrated Pest Management

Biologically Intensive Pest Control (BIPM)

Success with Biological Control

Rice

Sugarcane

Tomato

Tobacco

Cotton

Horticultural and Plantation Crops

Future Thrust

Conclusions

10. PRESSMUD AS PLANT GROWTH PROMOTER

Material and Methods

Results and Discussion

11. BIOFERTILIZER FOR MULTIPURPOSE TREE

SPECIES

Material and Methods

Species

Inoculum Preparation

Treatment

Preparation of Soil-Vermiculite Mixture

Inoculation of Acacia Nilotica

Inoculation of Eucalyptus Hybrid

Results

Discussion

Summary

12. TREE LEGUMES TO BIOINOCULATION OF

ENDOMYCORRHIZAE

Material and Methods

Results and Discussion

Summary

13. GROWTH RESPONSE OF CAJANUS CAJAN

Material and Methods

Growth Response of Cajanus Cajan to Glomus

Aggregatum with Cement Dust Amendments

Assessment of Percent Mycorrhizal Association

Estimation of Dry Weight

Results

Infectivity

Efficacy

Discussion

Summary

14. SALINE SOIL TOLERANCE OF SAPINDUS
EMARGINATUS

Material and Methods

Results and Discussion

15. SELF SUSTAINABILITY OF ORGANIC FARMING

Self Sustainable System

Design of Self-Sustainable Agro-Ecosystems

Ecological Processes to Optimize in Agro-Ecosystems

Mechanisms to Improve Agro-Ecosystem Immunity

Peripherals for Self-Sustainability

Bio-Diversified Agro-Ecosystems

Crop Rotations

Polycultures

Agroforestry Systems

Cover Crops

Animal Integration

Integration of Livestock

Integration of Aquaculture

Indigenous Organic Farming Practices

Soil and Water Conservation

Arable Land Management

Agronomical Measures

Wind Erosion Control

Water Erosion Control Measures

Engineering Measures

Non-Arable and Denuded Land Management

Rain Water Conservation

Mulches

Essentiality of Mulching

Mulch and Microlife Activities

Activity of Earthworm

Weed Suppression

Birds and Mulch Disturbance

Mulch and Retention of Moisture

Increase in Crop Yield

Control of Temperature

Protection Soil Against Erosion

Control of Pest and Disease

Appearance

Drawbacks of Mulching

Types of Mulch

Loose Organic and Non Organic Mulches

Vertical Mulch

Live Vegetative Barriers

Agroforestry/Alternate Land Use Systems

Basic Principles

Types of Agroforestry Systems

Alley farming

Ley farming

Silvipasture

Agri-Horticulture

Windbreaks and Shelterbelts

Interactions Between Trees and Crops

Useful for Organic Farming

Effects of Trees on Soils

Beneficial Effect

Soil Conservation

Soil Fertility

Management of Adverse Effects of Trees

Management of Agroforestry for Organic Farming

Conclusion

16. RICE ECOSYSTEM

Rice Ecosystems of Kerala

Midland and Malayoram Rice Ecosystem

Chittoor Black Soil

Irrigated Rice Ecosystem

Onattukara

Kuttanad

Karilands

Karappadam Soils

Kayal Lands

Kole Lands

The Coastal Saline Rice Eco Systems

High Range Rice Eco System

Koottumundakan System

17. "POKKALI"—WORLD ACCLAIMED FARMING

SYSTEM MODEL

Climate

Crops and Crop Season

Reclamation of Saline Soils

Varieties

Seeds and Sowing

Seedling Establishment and Aftercare

Rice-fish/prawn integration in Pokkali fields

Selective Culture of Prawn

Rice Cum Fish Culture

Sustainable Farming System

18. NEEM : THE BEST EXAMPLE FOR ORGANIC

FARMING

Uses of Neem

Neem for Pest Control

Limonoids

Azadirachtin

Meliantriol

Salannin

Nimbin and Nimbidin

Others

Mode of Action

Effectiveness

Good Control

Moderate Control

Poor Control

Nontarget Species

Earthworms

Beneficial Insects

Preparations for Pest Control

Methods of Application
Water Extraction
Hexane Extraction
Pentane Extraction
Alcohol Extraction
Formulations
Additives
Practical Methods for Preparations
Control of Stored Grain Pest
Uses of Neem Extract
Preparing Crushed Neem Seed
Neem to Control Stem Borers on Young Plants
Extracting Neem Oil
Controlling Bruchid Beetles in Stored Beans
Control of Soil-Borne Pests
Neem Water Extract for Plant Protection
Water based Neem Spray to Control Cutworms
Success Stories
Desert Locust
Cockroach
Brown Planthopper
Stored-Product Insects
Armyworm
Mosquitoes
Aphids
Fruit Flies
Nematodes
Snails
Crustaceans
Fungi
Aflatoxin
Plant Viruses
Propagation and Planting of Neem
Climatic Requirements
Rainfall
Temperature
Raising Seedlings
Transplanting
Conclusions

19. RICE-FISH INTEGRATION : A WIN-WIN FARMING MODEL

Externalities of Green Revolution
Lowland Rice Ecologies
Diversification—IFS Approaches
Vanishing Rice Lands—Economic Sustainability Issues
Pokkali System—the Classic Example
Rice-Fish, Harnessing Complementarities
Group Fish Farming (GFF)
Environmental Superiority
Economic Sustainability
Win-Win Land Use Model

20. RICE SOILS IN COASTAL—AREA SUSTAINABLE SOIL NUTRIENT IN ORGANIC RICE FARMING

Organic Farming—the Truths vs. Myths
Organics as a Source of Plant Nutrients
Organic Farming and Food Security
Organic Farming—A Lesson from China
Biodynamic Farming
System of Rice Intensification (SRI)
Conclusions

21. UTILIZATION OF BENEFICIAL MICROORGANISMS FOR SUSTAINABLE ORGANIC RICE PRODUCTION

Biological Nitrogen Fixers
Legume - Rhizobium symbiosis
Azospirillum
Different Methods of Application of Azospirillum in the Field
Cyanobacteria (Blue Green Algae - BGA)
Mass Production of BGA in the Field
Anabaena - Azolla Symbiosis
Utilization of Azolla for Rice
Mass Production of Azolla in the Field
Phosphorus Solubilising Microorganisms
Arbuscular Mucorrhizal Fungi (AMF)
Silicate Solubilising Bacteria
Zinc Solubilising Bacteria
Plant Growth Promoting Rhizobacteria (PGPR)
Efficacy of PGPR in Rice

Methods of Application of Pseudomonas Fluorescens in Rice

Microbial Consortium for Rice

22. BIOGAS POTENTIAL FROM WASTES AND ITS VALUE

Manurial Value of Digested Slurry

23. RECYCLING OF ORGANIC MATERIALS AS ORGANIC FERTILIZERS

Direct Incorporation of Organic Materials in Soil and Their Effects
Maintenance of Organic Matter in Indian Soils
Effect of Organic Matter on Soil Microorganisms
Organic Mulch
Effect of Crop Residues on Yield of Legume Crops
Effect of Straw, Neem Cake and Farmyard Manure on Yield of Maize Crop
Effect of Incorporation of Organic Matter on Paddy Crop
Influence of Humic Substances on Crop Yields

24. RESPONSE OF CROPS TO ORGANIC FERTILIZERS

Farmyard Manure and Compost
Oil-Cakes
Long-Term Effect of Organic Manures
Effect of Organic Manures in Rotation
Manurial Requirements of a Fixed Crop Rotation
Rice-Wheat Rotation
Rice-Rice Rotation
Maize-Wheat Rotation
Jowar-Wheat Rotation
Bajra-Wheat Rotation
Rotation-Jowar in Kharif-Bajra in Rabi
Response of Crops to Bone-Meal

About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

Our various services are: Detailed Project Report, Business Plan for Manufacturing Plant, Start-up Ideas, Business Ideas for Entrepreneurs, Start up Business Opportunities, entrepreneurship projects, Successful Business Plan, Industry Trends, Market Research, Manufacturing Process, Machinery, Raw Materials, project report, Cost and Revenue, Pre-feasibility study for Profitable Manufacturing Business, Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Business Opportunities, Investment Opportunities for Most Profitable Business in India, Manufacturing Business Ideas, Preparation of Project Profile, Pre-Investment and Pre-Feasibility Study, Market Research Study, Preparation of Techno-Economic Feasibility Report, Identification and Section of Plant, Process, Equipment, General Guidance, Startup Help, Technical and Commercial Counseling for setting up new industrial project and Most Profitable Small Scale Business.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs are often faced with the dilemma of zeroing in on a suitable product/line.

NIIR PROJECT CONSULTANCY SERVICES, 106-E, Kamla Nagar, New Delhi-110007, India.
Email: npcs.india@gmail.com Website: NIIR.org

Sun, 25 Jan 2026 23:58:46 +0000