Pines are known to mankind from the time immemorial. It offers both direct uses, as well as indirect uses specially soil conservation. Initially it was used mainly for fuel; their branches were used for festivals etc. Pines besides being a source of valuable timber, pulpwod, yield pitch, tar, rosin, colophony and turpentine, collectively known as naval stores, a term coined to these owning to their use for construction and maintenance of sailing vessels as sealing compounds for their wooden hulls. The genius pine species tapped for their oleoresin in different countries. A variety of oleoresins are extracted from various plants. Pine oleoresin being the most important one is extracted from pine trees. Turpentine and rosin are two constituent parts of the pine oleoresins. The composition of turpentine varies considerably according to the species of pine exploited. More and more specialised uses are being found for pine resin products, particularly those of high quality. Turpentine derived from pine resin is also used as a source of aroma chemicals in flavour and fragrance industry. Pinewood chemicals are effectively gained from the trees in three principal ways; treatment of exuded gum from living pines, processing the wood stumps and wastes of aged trees and treatment of black liquor obtained as a byproduct in wood pulp industry. There are two steps involved in production of oleoresin; olustee gum cleaning process and recovery of turpentine and rosin: batch and continuous process. The panorama of base catalysed isomerisations of terpenes is an important part of aroma chemistry. Major contributions in this area are presented here under sections on hydrocarbons, alcohols, aldehydes, ketones, acids, esters and epoxides. Tall oil is a by product of the pine wood use to make sulfate pulp. Tall oil products find use in many product applications because of their economy and ready availability. The principal industrial applications of tall oil products are numerous; adhesives, carbon paper, detergents, driers, drilling fluids, oils, gloss oils, paper size, plasticizers, printing inks, soaps, textile oils etc.

Some of the fundamentals are pine oleoresin extraction methods, occurrence, formation and exudation of oleoresin in pines, processing of oleoresin, rosin derivatives and its potential, new developments in rosin ester and dimer chemistry, terpene based adhesives, effect of solvent, ozone concentration and temperature on yields were investigated, sylvestrene and some of its derivatives, homopolymers and copolymers of acrylates, polymers and copolymers of vinyl pinolate, base catalysed isomerisations of terpenes, components
of pine roots, insecticides based on turpentine, the general characteristics of dimer acids, structure and properties of dimer acids etc. The present book has been published having in views the important uses of pines. The book contains manufacturing process of different products extracted from pines like oleoresin, rosin, turpentine derivatives, tall oil, resins and dimer acids etc. This is the first book of its kind which is very resourceful for all from researchers to professionals.

Contents

1. PINUS
 Introduction
 Distribution
 Distribution in India
 Morphology
 Key to the Identification of Indian Species
 Anatomy
 Root
 Root-Stem Transition
 Shoot Apex
 Stem
 Leaf
 Embryology
 Male Cones
 Female Cones
 Pollination
 Receptive Spot
 Fertilization
 Embryogeny
 Seed Coat
 Wing
 Germination
 Cytology
 Seed Testing
 Seed Production and Dormancy
 Breeding
 Diseases
 Mycorrhiza
 Pests

2. PINE OLEORESIN EXTRACTION METHODS
 Introduction
 Cup the Larger-Diameter Trees for Increased Yields and Greater Profits
 Double-Facing
 Gum Yield from Shoulders
 Use Currect Tin Lengths
 First-Year Installation of Spiral Gutters with Double-Headed Nails
 Shaving the Bark
 Attach the Apron First
 Attaching the Spiral Gutter
 Completed Installation
 Use of the Advanced Streak
 Turpentining and Growth
Bark Chipping
Mounting and Sharpening the Bark Hack
Treating the Streak
Acid Penetration Above the Streak
Wounding the Tree for Gum Production
Metal Cups, Acid Corrosion and Gum Grades
Raising Tins Installed with Double-Headed Nails
Bark Pulling and Acid Treatment
How to Use the Spray-Puller
Acid Paste Method
Applying the Paste
Chipping and Paste Treatment
Streak Height
Turpentinined Section Suitable for Other Wood Products
Beetle Attacks and Control Measures
The Black Turpentine Beetle
The Ips Beetle
Solutions for Beetle Control
3. PINES FOR THEIR OLEORESIN
Occurrence, Formation and Exudation of Oleoresin in Pines
Oleoresin Tapping
French Methods
Spanish Method
Greek Method
Indian Method
Mexican Method
American Bark-Chipping Method
The Austrian and German “Herringbone” Methods
Russian Methods
Methods in Other Countries
Felled Pine Wood as Source of Rosin and Turpentine
Composition of Oleoresin
Summary
4. PROCESSING OF OLEORESIN
Processing of Oleoresin
Olustee Gum Cleaning Process
Recovery of Turpentine and Rosin
Stripping Column
Multiple Tube Column
Luwa Columns
Fractionation of Turpentine
Batch Operation
Semi-Continuous Operation
Continuous Operation
Column Packings
Isomerisation of α-Pinene
Camphene Via Bornyl Chloride
Catalytic Isomerisation of α-pinene
Reaction Mechanism
Design Aspect of an Isomerisation Reactor
Liquid Phase
Vapor Phase
5. ROSIN DERIVATIVES AND ITS POTENTIAL
6. HYDROGENLESS HYDROGENATION OF RESIN ACIDS
Experimental
Results and Discussion
Transfer Hydrogenation of Isopimaric/Pimaric Acids
Transfer Hydrogenation of Abietic Acids
Reaction Mechanism

7. NEW DEVELOPMENTS IN ROSIN ESTER AND DIMER CHEMISTRY
New Rosin Esters
Chemistry of Rosin Dimers

8. TERPENE RESINS
Physical Properties
Chemical Properties
Manufacture
Uses

9. TERPENE BASED ADHESIVES
Introduction
Chemistry
Beta-Pinene Resins
Initiation
Propagation
Termination
Dipentene Resins
Alpha-Pinene Resins
Physical Characteristics of Resins
Pressure Sensitive Adhesives
Hot Melt Adhesives
Analytical Methods
Commercial Resins and Their Uses
Commercial Production
Applications in Pressure Sensitive Adhesives
Applications in Hot Melt Adhesives

10. OZONOLYSIS OF ALPHA-PINENE
Effect of Solvent, Ozone Concentration and Temperature on Yields were Investigated
Experimental Conditions are Discussed

11. ιÅ•-BROMOLONGIFOLENE
Steam Distilled Products
Residue
Chromic Acid Oxidation of Dilongifolenyl Ether
Lead Tetraacetate Oxidation of Longifolene

12. PEROXIDES FROM TURPENTINE
Peroxide Number and Degree of Unsaturation are Tests of Product Quality
Catalytic Hydrogenation of Pinene to Pinane is First Step in Hydroperoxide Production
Small and Large Scale Techniques of Pinane Oxidation are Investigated
Cold-Rubber Polymerization
Decomposition of Pinane Hydroperoxide
Over-all Yield of 85% is Realized in Production of High Purity Hydroperoxide
Peroxidation
Stripping of Oxidates
Polymerization
Heavy Metal Salts Accelerate Decomposition of Pinane Hydroperoxide
Decomposition
Summary
13. PINONIC ACID
Ozonolysis of α-Pinene in Acetic Acid Solution Proved Best Method
Yields were Determined by Partition Chromatography
Ozone Source
Reagents
Ozonization
Calculations and Analyses
Direct Ozonolysis was not Successful
Ozonization in Methanol
Ozonization and Decomposition in Aqueous Acetic Acid at Room Temperature
Ozonization in Aqueous Acetic Acid at 0°C. Decomposition in the Presence of Oxidants
Ozonization in Nitromethane
14. SYLVESTRENE AND SOME OF ITS DERIVATIVES
Sylvestrene
Sylvestrene Nitrosochloride
Sylvestrene Oxide
m-Terpineols
Sylvedihydrocarvone
15. 8-ACETOXYCARVOTANACETONE
16. RECOVERY OF 3-CARENE FROM CHINESE TURPENTINE AND SYNTHESIS OF ACETYL-CARENES
Introduction
Distillation of Wood and Sulfate Turpentines
Material and Methods
Distillation Results
Synthesis of Acetyl-Carene
Materials and Methods
Results and Discussion
Synthesis Products
17. HOMOPOLYMERS AND COPOLYMERS OF ACRYLATES
Introduction
Results and Discussion
Monomers
Homopolymerization
Copolymerization
Terpolymerization
Epoxidation
Curing
Hydrolysis of Polymethacrylate of I
Experimental
Reduction of α-Campholene Aldehyde
Typical Preparation of a Monomer: Methacrylate of II
Typical Homopolymerization Recipe: Homopolymer Methacrylate of II
Typical Copolymerization Recipe: Copolymer of the Methacrylate of II and Acrylate of I
Solution Copolymer of the Methacrylate of II and Fumaronitrile
Typical Terpolymerization Recipe: Terpolymer of the Acrylate of I, Acrylonitrile and Butadiene
Typical Epoxidation Procedure
18. POLYMERS AND COPOLYMERS OF VINYL PINOLATE
Preparation of Vinyl Pinolate
Polymerization
Reaction of Vinyl Pinolate Copolymers with Isocyanates
Experimental
Preparation of Vinyl Pinolate
Polymerization of Vinyl Pinolate in Solution
Polymerization of Vinyl Pinolate in Suspension
Polymerization of Vinyl Pinolate in Emulsion
Copolymerization of Vinyl Pinolate and Vinyl Acetate in Solution
Copolymerization of Vinyl Pinolate and Vinyl Chloride in Solution
Copolymerization of Vinyl Pinolate and Vinyl Chloride in Emulsion
Reaction of Polymers with Isocyanates
Evaluation of Vinyl Pinolate and Vinyl Chloride Copolymers
19. HOMOPOLYMERIZATION OF HYDRONOPYL VINYL ETHER
Discussion
Experimental
Materials
Preparation of 2-Hydronopxyethyl Vinyl Ether
Polymerization of HVE and HEVE
X-Ray Analysis of Poly (HVE)
Evaluation of Poly (HEVE)
20. TERPOLYMERS OF ETHYLENE AND PROPYLENE WITH d-LIMONENE AND iÅ¾-PINENE
Introduction
Results and Discussion
Experimental
Materials
Preparation of EPT Rubber
Analysis of Unsaturation
Determination of Gel Content
Determination of Methyl Group Content in Polymer
21. LOW MOLECULAR WEIGHT POLYMERS OF d-LIMONENE
Experimental
Materials
General Procedure
Results
Infrared Spectra
Nuclear Magnetic Resonance Spectra
Optical Activity
Perbenzoic Acid Oxidation
Discussion
22. BASE-CATALYSED ISOMERISATIONS OF TERPENES
Hydrocarbons
Alcohols
Aldehydes
Ketones
Acids
Esters
Epoxides
Conclusion
23. COPOLYMERS OF VINYL CHLORIDE OF PINENE
Experimental Homopolymerization Copolymerization Test of Heterogeneity of a Copolymer Evaluation of New Polymers 24. POLYALLOÖCIMENE Experimental Monomer Polymerizations Polymer Ozonolysis Discussion of Results 25. ESSENTIAL OIL IN CHLOROPHYLL-CAROTENE PASTE FROM PINE NEEDLES AND TWIGS Abstract 26. ESSENTIAL OIL OF THE CONE OF PINUS SYLVESTRIS VAR. MONGOLICA 27. COMPONENTS OF PINE ROOTS Conclusions Composition of the Remaining Neutral Fraction Composition of the Carbonyl Fraction Composition of the Hydroxyl Fraction Results and Discussion Composition of Turpentine Composition of the Resin Acid Fraction 28. WOOD TURPENTINE OIL FROM PINE STUMPS 29. BLENDING OF TURPENTINE PRODUCTS Lilac Pine Bouquet Cuir De Russe (for leather) Violet Lavender Bouquet Oriental Gardenia Fougere Eau De Cologne Amber Chypre Ylang Syn Sweet Pea 30. BIOLOGICALLY ACTIVE COMPOUND FROM TURPENTINE Terpenoids as Antimicrobials Terpenoids as Anthelmintics Terpenoids as Insecticides Terpenoids as Plant Growth Hormones Terpenoids as Anticancer Agents Terpenoids as Pharmacological Agents Terpenoid Derivatives as Biodynamic Agents Terpenoids as Intermediates for Synthesis of Biodynamic Agents 31. INSECTICIDES BASED ON TURPENTINE Toxaphene (C10H10 CI8) Strobane (C10H11CI7)
32. TALL OIL
History of Tall Oil
Production Processes for Tall Oil
Recovery of Tall Oil
Acid Refining of Tall Oil
Fractionation of Tall Oil
Composition and Properties of Tall Oil
Crude Tall Oil
Distilled Tall Oil
Acid Refined Tall Oil
Fractionated Tall Oil
Analysis and Testing of Tall Oil Products
Shipping, Storage and Handling of Tall Oil Products
Crude Tall Oil
Acid Refined Tall Oil
Tall Oil Fatty Acids and Distilled Tall Oils
Tall Oil Heads
Tall Oil Pitch
Tall Oil Rosin
Safety Notes
Applications of Tall Oil
The Chemistry of Tall Oil Fatty and Rosin Acids
Chemical Composition of Tall Oil Fatty Acids
General Reactions of Tall Oil Fatty Acids
Chemical Composition of Tall Oil Rosin
General Reactions of Tall Oil Rosin
Tall Oil Products in Surface Coatings
Tall Oil in Alkyd Resins
Tall Oil Formulations in Alkyd Resins
Esters of Tall Oil Products
Tall Oil Formulations in Esters
Other Uses for Tall Oil Products
Tall Oil in the Plasticizer Field
Esterification of Tall Oil for Plasticizers
Tall Oil in Adhesives and Linoleum Cement
Tall Oil in Rubber-based Adhesives
Tall Oil in Hot-Melt Adhesives
Tall Oil Products in Linoleum Cements
Formulation with Tall Oil
Formulation with Tall Oil Esters
33. DIMER ACIDS
The General Characteristics of Dimer Acids
Introduction
Dimer Acids Manufacture and Feedstock
By Products of the Dimerization Reaction
Monomer Acids
Trimer Acids
Structure and Properties of Dimer Acids
Structure of Dimer Acids
Analysis of Dimer Acids
Physical Properties of Dimer Acids
Chemical Reactions of Dimer Acids
Reactions of the Double Bonds and at the i-1-Carbon Atoms
About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.