The production of degradable organic waste and its safe disposal have become the current global problem. The rejuvenation of degraded soils by protecting topsoil and sustainability of productive soils is a major concern at the international level. Vermicomposting is compatible process with sound environmental principles that value conservation of resources and sustainable practices. Vermicompost is known to be the world best organic fertilizer. Vermiculture is for vermicompost. Vermiculture means artificial rearing or cultivation of worms (Earthworms) and the technology is the scientific process of using them for the betterment of human beings. Vermiculture technology has improved the crop productivity by increasing soil fertility through ecological methods of farming. Vermiculture has been embraced throughout the world right from the developed countries to the developing countries. Vermicomposting is a panacea for solid waste management. It is a simple kindred process of composting, in which certain species of microorganism such as earthworms are used to enhance the process of waste conversion and produce a better end product. Earthworms serve as nature plowman to facilitate these functions. They form gift of nature to produce good humus, which is the most precious material to fulfill the nutritional needs of crops. The utilization of vermicompost results in several benefits to farmers, industries, environment and overall national economy. This contains experiments from the field, vermicomposting materials, earthworm life cycle, ecological types earthworms, role of earthworms, vermicomposting, advantages of vermiculture, vermitotechnology. This book majorly deals with advantages of vermicomposting, vermicomposting in daily life vermiculture v/s vermicomposting, earthworms: ecological types, physical and chemical effects of earthworms on soils, fertilizers use and deterioration of soil environment, vermicomposting materials, feeding vermicomposting materials, ideal conditions for life of earthworms, earthworms : their application in organic agriculture, maintenance of vermicomposting beds, vermicomposting : general procedures at agricultural farms vermicomposting : kiss plan, vermicomposting: a world scenario, soil fertility and texture, advantages of vermiculture, small scale or indoor vermicomposting, large scale or outdoor vermicomposting etc. This book is an invaluable resource for readers, entrepreneurs, scientists, farmers, existing industries, technical institution, etc.
Contents

1. INTRODUCTION
Advantages of Vermicomposting
Vermicomposting in Daily life
Vermiculture v/s Vermicomposting
Vermitechnology (VT)
Progress of worm industry
Turning Garbage into Money
Chemical composition of the Vermicompost
Vermicomposting at Home
Vermicomposting on the Farm
The Business of Worms
Interaction of Vermicompost-Earthworm-Mulch-Plantroot (Vemp)
Earthworm Farming is not hard

2. EARTHWORMS : ECOLOGICAL TYPES
Trophic Classification of Earthworms
Drilosphere
Physical effects of Earthworms on soils
Chemical effects of Earthworms on soils
The effect of absence of Earthworms in soils

3. PHYLUM ANELIDA : EARTHWORM
Earthworms
Economic Importance
Pheretima Poshumana
The Body Wall
Locomotion
The Coelom
The Digestive System
Food and Digestion
Respiration
Excretory Organs
Physiology of Excretion
Chloragogen Cells
Vascular System
The nervous system
Working of the Nervous system
Receptor Organs
Generative Organs
Copulation
Fertilization and Cocoon Formation
Classification

4. EARTHWORMS : LIFE CYCLE
Life cycle studies
Life cycle patterns
Life cycle-Lampito mauritii
Cocoons
Juveniles
Non-clitellates
Clitellates
Life Cycle - Perionyx excavatus
Cocoons
Juveniles
Non-clitellates
Clitellates
Doubling Time
Biochemical changes during growth

5. EARTHWORMS: FOR CULTURE
Worms for Vermiculture
Earthworm Breeding
Vermicompost
Collecting local earthworms

6. WHY VERMICOMPOSTING
Fertilizers use and deterioration of Soil Environment
Testing the impact of Vermicomposting
Nitrogen and Humification in Vermicomposting
Vermicompost - a quality manure
Recycling of wastes through Vermi-composting
Minimizing Pollution Hazard
Providing growth promoters
Vermicomposting : Advantages
Black gold (worm castings) from worms
Adverse Effects on Crops
Economic Vibility

7. VERMICULTURE AND VERMITECH
How to Start Vermiculture
Preparation of Vermibeds
Setting Up of a Vermiwash Unit
An Enterprise
Economics of Vermitech (In Indian Rupees)
Construction and maintenance of a Twin Unit System Marketing

8. VERMICOMPOSTING MATERIALS
Animal dung
Agricultural waste
Forestry wastes
City leaf litter
Waste paper and cotton cloth etc.
City refuge
Biogas slurry
Industrial wastes
Feeding Vermicomposting Materials
What should not be Fed to Earthworms?
How much Earthworm Eat
How to Feed Earthworm?
Vermicomposting : Types
Small scale or Indoor Vermicomposting
Large scale or outdoor Vermicomposting
In-situ culturing of earthworms
Simple promotion of vermic activity in fields
Development of Earthworms in Gardens and Orchards
Large Scale Commercialized Vermicomposting in Open Heaps
Vermicomposting: Requirements
Environmental Requirements
Air (Aeration)
Moisture Content
Temperature
How to Construct a Worm Bin
Bedding Materials
Other Requirements
Container
Containers: Types
Small Barrel or Drum Composter
Large Barrel or Drum Composter
Three-chambered Bin
Making of three-chambered bin
Bedding Material
Ideal Conditions for Life of Earthworms
Food for Worms
Adding Food Waste
Proper Ingredient Mixture
Browns
Greens
Particle Size
Fertilizer and Lime
pH
Other Factor Affecting Earthworm's Growth
Earthworm and Insects
Tilling and Earthworm Population
Earthworm and come Drounding
Maintaining the Bin
Harvesting the Compost and Worms
General Problems in Production of Vermicomposting Remember

9. EXPERIMENTS FROM THE FIELD
Earthworms: Their Effect on Plant Growth
Growing vegetables
Are Earthworms Alone?
Effect on soil quality
Soil loss
Adverse Effects on Crops
Impact of Chemicals on Earthworms
Impact of Heavy Metals
Earthworms in Food Chains
Earthworm Parasites

10. EARTHWORMS: THEIR APPLICATION IN ORGANIC AGRICULTURE
Organic Method Under Rainfed Conditions
I. Cultivation of groundnut (per acre) (All costs in Indian rupees)
Cost of Field Preparation
Net Profit From Both Types of Cultivation (per acre)
II. Cultivation of brinjal (per acre)
Net Profits from both Types of Cultivation (per acre)
III. Cultivation of Okra (per acre)
 Net profit From Cultivation
IV. Cultivation of Paddy
V. Cultivation of sugarcane

11. WAYS TO MAKE COMPOST
 Selection of Suitable Species
 Epiges (Eisenia foetida)
 Endoges (Eudrilus eugeniae)
 Aneciques
 Basic Characteristics of Suitable Species
 Composting Material : Preliminary Treatment
 Vermicomposting Schemes
 Maintenance of Vermicomposting Beds
 Scheme One
 Scheme Two
 Scheme Three
 Scheme Four
 Scheme Five
 Scheme Six
 Harvesting the Worms and Compost
 Using Worm Compost
 Vermicomposting Efficiency
 Transportation of Live Worms
 Vermicompost : Applications
 Flower or Garden pots
 In Horticulture
 In Agriculture
 Vermicomposts : Characterization
 Vermiwash
 Problems in Using Vermiwash
 Earthworm Paste
 Vermicomposting : General Procedure at Home
 Vermicomposting : General Procedures at Agricultural Farms
 Vermicomposting : Kiss Plan
 Advantages of KISS Plan
 Step 1: Windrow Preparation
 Important Considerations
 Step 2: Extending the Windrow
 Step 3: Making Quality Castings
 Step 4: Moisture and Irrigation
 Step 5: Windrow Cover
 Step 6: Harvesting
 Earthworms Predators and Parasites
 Mite pests in Earthworm Beds
 White or Brown Mites
 Red Mites
 Mite Prevention
 Removal of Mite
 Parasites and pathogens

12. EARTHWORMS : END USES AND POTENTIAL
 Earthworms in Medicine
Earthworms as Feed
Economic potential
Legal constraints
Conclusion

13. EARTHWORMS : END USES AND POTENTIAL
The Future
Sampling Methods
Hand Sorting
Principle
Materials
Procedure
Washing and Sieving
Principle
Materials
Procedure
Use of Chemical Repellants
Principle
Materials
Procedure
Electrical Methods
Principle
Materials
Procedure
Trapping Methods
Materials
Procedure
Other Method
Flotation
Heat Extraction
Number of Casts
Measurement of Earthworm Biomass
Storage and Identification
Storage
Identification

14. VERMICOMPOSTING: A WORLD SCENARIO
Grace McKellar Centre, Geelong, Victoria, Australia
Hobart City Council, Tasmania, Australia
National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
Newcastle City Council, New South Wales, Australia
Oregon Soil Corporation, Beaverton, Oregon, United States
Pacific Southwest Farms, Ontairo, California, United States
Resource Conversion Corporation/Canyon Recycling, San Diego, California, U.S.
Rideau Regional Hospital, Perth, Ontario, Canada
San Quentin Prison, California
Seattle Kingdome Stadium, Seattle, Washington, United States
Sovadec, La Voulte, France
Vermiculture Production Center, Pinar del Rio Province, Cuba
Vermicycle Organics, Inc., Charlotte, North Carolina, United States
India
Green Cross Society of Mumbai, India
Indian Aluminum Co. Ltd, Belgaum, India
M.R. Morarka - GDC Rural Research Foundation, Jaipur
15. ROLE OF EARTHWORMS
In sustainable Agriculture
Organic Farming
Earthworms Activities
Soil Fertility and Texture
Soil Aeration
Water Impercolation
Decomposition and Moisture

16. VERMITECHNOLOGY
Definition
History
In Other Countries
In India

17. ADVANTAGES OF VERMICULTURE
Production of Cheap Animal Protein
Vermi Cast
Soil and Vermi Cast
Earthworm Inoculation in Soil
Decomposition of Bio-Degradeable Wastes and Vermicomposting
Vermiculture in Pollution Abatement

18. VERMICULTURE
General and Planning
Selection of Suitable Species
Basic Characteristics of Suitable Species
Description of Suitable Species
Family : Lumbricidae
1. Bimastos parvus (= Allobophora (Bimastosparvus Eisen)
2. Eisenia foetida (Sav.)
Family : Eudrilidae
1. Eudrilus eugeniae (Kinb.)
Family : Megascolecidae
1. Lamptio mauritii (Kinb.)
2. Metaphire anomala Mich. (= Pheretima anomala)
3. Metaphire posthuma (= Pheretima posthuma)
4. Perionyx excavatus E. Perr.
5. Perionyx sansbaricus Michaelson
Family: Octochaetidae
1. Octochaetus (Octochaetoides) surnensis Mich.
2. Ramiella bishambari (Steph.)
Sub-family : Diplocardinae
1. Dichogaster bolaui (Mich.)
2. Dichogaster affinis (Mich.)
3. Dichogaster curgensis (Micha.)
4. Dichogaster salliens (Bedd.)
5. Ramiella bishambari (Steph.)
6. Erythodraeidrilus suctorius (Steph.)
7. Ocnerodrilus (Ocnerodrilus) occidentails (Eisen.) Family : Moniligastriidae
1. Moniligaster perrieri (Mich.)
2. Drawida willisi (Mich.)
19. VERMICOMPOSTING

General

Advantages of Vermicomposting

Vermicomposting Materials

Preliminary Treatment of Composting Material

Small Scale or Indoor Vermicomposting

Large Scale or Outdoor Vermicomposting

Other Types of Vermi-Composting

Requirement for Vermicomposting

Feed for Earthworms

Vermicomposting Schemes

Maintenance of Vermicomposting Beds

Vermicomposting Efficiency

Collection of Vermicompost

Transportation of Live Worms

Marketing Outlets

DIRECTORY OF VERMICULTURE RESOURCES

About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

NIIR PROJECT CONSULTANCY SERVICES, 106-E, Kamla Nagar, New Delhi-110007, India. Email: npcs.india@gmail.com Website: NIIR.org